in

Effects of two measures of riparian plant biodiversity on litter decomposition and associated processes in stream microcosms

  • 1.

    Lawton, J. H., May, R. M. & Raup, D. M. Extinction Rates Vol. 11 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  • 2.

    Loh, J. & Wackernagel, M. Living Planet Report 2004. Report No. 288085265X (WWF, Gland, 2004).

    Google Scholar 

  • 3.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Article  Google Scholar 

  • 5.

    Amici, V. et al. Anthropogenic drivers of plant diversity: perspective on land use change in a dynamic cultural landscape. Biodivers. Conserv. 24, 3185–3199 (2015).

    Article  Google Scholar 

  • 6.

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Article  Google Scholar 

  • 7.

    Leroy, C. J. & Marks, J. C. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw. Biol. 51, 605–617 (2006).

    Article  Google Scholar 

  • 8.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108. https://doi.org/10.1038/nature11118 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 9.

    Suurkuukka, H. et al. Woodland key habitats and stream biodiversity: Does small-scale terrestrial conservation enhance the protection of stream biota?. Biol. Conserv. 170, 10–19 (2014).

    Article  Google Scholar 

  • 10.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article  Google Scholar 

  • 11.

    Wallace, J., Eggert, S., Meyer, J. & Webster, J. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277, 102–104. https://doi.org/10.1126/science.277.5322.102 (1997).

    CAS  Article  Google Scholar 

  • 12.

    Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024755 (2019).

    Article  Google Scholar 

  • 13.

    Kominoski, J. S. et al. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11, 423–432. https://doi.org/10.1890/120056 (2013).

    Article  Google Scholar 

  • 14.

    Swan, C. M. & Palmer, M. A. Leaf diversity alters litter breakdown in a piedmont stream. J. N. Am. Benthol. Soc. 23, 15–28 (2004).

    Article  Google Scholar 

  • 15.

    López-Rojo, N. et al. Plant diversity loss affects stream ecosystem multifunctionality. Ecology 100, e02847 (2019).

    Article  PubMed  Google Scholar 

  • 16.

    Stout, B. M. III., Benfield, E. & Webster, J. Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshw. Biol. 29, 59–69 (1993).

    Article  Google Scholar 

  • 17.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72. https://doi.org/10.1038/35083573 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380. https://doi.org/10.1016/j.tree.2010.01.010 (2010).

    Article  PubMed  Google Scholar 

  • 19.

    Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419. https://doi.org/10.1111/j.1461-0248.2009.01388.x (2009).

    Article  PubMed  Google Scholar 

  • 20.

    Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    Article  PubMed  Google Scholar 

  • 22.

    Burns, J. H. & Strauss, S. Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. 108, 5302–5307 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    Article  PubMed  Google Scholar 

  • 24.

    Mouquet, N. et al. Ecophylogenetics: advances and perspectives. Biol. Rev. Camb. Philos. Soc. 87, 769–785 (2012).

    Article  PubMed  Google Scholar 

  • 25.

    López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems (2020) (in press).

  • 26.

    Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. 105, 17012–17017 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    Boyero, L. et al. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc. R. Soc. B Biol. Sci. 283, 20152664. https://doi.org/10.1098/rspb.2015.2664 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Fernandes, I., Duarte, S., Cássio, F. & Pascoal, C. Plant litter diversity affects invertebrate shredder activity and the quality of fine particulate organic matter in streams. Mar. Freshw. Res. 66, 449–458 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221. https://doi.org/10.1038/nature13247 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    López-Rojo, N. et al. Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE 13, e0198243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Tonin, A. M. et al. Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.12837 (2017).

    Article  Google Scholar 

  • 32.

    Vos, V. C. A., van Ruijven, J., Berg, M. P., Peeters, E. T. H. M. & Berendse, F. Macro-detritivore identity drives leaf litter diversity effects. Oikos 120, 1092–1098. https://doi.org/10.1111/j.1600-0706.2010.18650.x (2011).

    Article  Google Scholar 

  • 33.

    Gessner, M. O. & Chauvet, E. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl. Environ. Microbiol. 59, 502–507 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Tonin, A. M. et al. Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Funct. Ecol. 31, 1471–1481 (2017).

    Article  Google Scholar 

  • 35.

    Graça, M. A. S. et al. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw. Biol. 46, 947–957. https://doi.org/10.1046/j.1365-2427.2001.00729.x (2001).

    Article  Google Scholar 

  • 36.

    McArthur, J. V., Aho, J. M., Rader, R. B. & Mills, G. L. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J. N. Am. Benthol. Soc. 13, 57–67 (1994).

    Article  Google Scholar 

  • 37.

    Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384. https://doi.org/10.2307/1939639 (1999).

    Article  Google Scholar 

  • 38.

    Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. 102, 1519–1524 (2005).

    ADS  Article  PubMed  Google Scholar 

  • 39.

    Laitung, B. & Chauvet, E. Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Arch. Hydrobiol. 164, 217–235 (2005).

    Article  Google Scholar 

  • 40.

    Rajashekhar, M. & Kaveriappa, K. Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia 501, 167–177 (2003).

    Article  Google Scholar 

  • 41.

    Friberg, N. & Jacobsen, D. J. Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshw. Biol. 42, 625–635 (1999).

    Article  Google Scholar 

  • 42.

    France, R. Leaves as “crackers”, biofilm as “peanut butter”: exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs. Oceanol. Hydrobiol. Stud. https://doi.org/10.2478/s13545-011-0047-y (2011).

    Article  Google Scholar 

  • 43.

    Frainer, A. et al. Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos 125, 861–871. https://doi.org/10.1111/oik.02687 (2016).

    CAS  Article  Google Scholar 

  • 44.

    Boyero, L. et al. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc. R. Soc. B Biol. Sci. 283, 20152664 (2016).

    Article  Google Scholar 

  • 45.

    Friberg, N. & Jacobsen, D. Feeding plasticity of two detritivore-shredders. Freshw. Biol. 32, 133–142 (1994).

    Article  Google Scholar 

  • 46.

    Lecerf, A. & Richardson, J. S. Biodiversity-ecosystem function research: insights gained from streams. River Res. Appl. 26, 45–54. https://doi.org/10.1002/rra.1286 (2010).

    Article  Google Scholar 

  • 47.

    Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M. O. & Chauvet, E. Decomposition of diverse litter mixtures in streams. Ecology 88, 219–227 (2007).

    Article  PubMed  Google Scholar 

  • 48.

    Taylor, B. R., Mallaley, C. & Cairns, J. F. Limited evidence that mixing leaf litter accelerates decomposition or increases diversity of decomposers in streams of eastern Canada. Hydrobiologia 592, 405–422. https://doi.org/10.1007/s10750-007-0778-3 (2007).

    Article  Google Scholar 

  • 49.

    Vos, V. C., van Ruijven, J., Berg, M. P., Peeters, E. T. & Berendse, F. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173, 269–280 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 50.

    Boyero, L., Cardinale, B. J., Bastian, M. & Pearson, R. G. Biotic vs. abiotic control of decomposition: a comparison of the effects of simulated extinctions and changes in temperature. PLoS ONE 9, e87426. https://doi.org/10.1371/journal.pone.0087426 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770. https://doi.org/10.1007/s00442-009-1336-7 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 52.

    Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474. https://doi.org/10.1111/1365-2656.12876 (2018).

    Article  PubMed  Google Scholar 

  • 53.

    Boyero, L. & Pearson, R. G. Intraspecific interference in a tropical stream shredder guild. Mar. Freshw. Res. 57, 201–206 (2006).

    Article  Google Scholar 

  • 54.

    Reiss, J., Bailey, R. A., Perkins, D. M., Pluchinotta, A. & Woodward, G. Testing effects of consumer richness, evenness and body size on ecosystem functioning. J. Anim. Ecol. 80, 1145–1154. https://doi.org/10.1111/j.1365-2656.2011.01857.x (2011).

    Article  PubMed  Google Scholar 

  • 55.

    McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504. https://doi.org/10.1111/j.1365-2656.2008.01357.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    LeRoy, C. J. et al. Plant phylogenetic history explains in-stream decomposition at a global scale. J. Ecol. https://doi.org/10.1111/1365-2745.13262 (2019).

    Article  Google Scholar 

  • 57.

    Correa-Araneda, F., Basaguren, A., Abdala-Díaz, R. T., Tonin, A. M. & Boyero, L. Resource-allocation tradeoffs in caddisflies facing multiple stressors. Ecol. Evol/ 7, 5103–5110 (2017).

    Article  Google Scholar 

  • 58.

    López-Rojo, N. et al. Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE 13, e0198243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Rao, C. R. Diversity and dissimilarity coefficients – a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).

    MathSciNet  Article  Google Scholar 

  • 60.

    Roscher, C. et al. Using plant functional traits to explain diversity-productivity relationships. PLoS ONE 7, e36760. https://doi.org/10.1371/journal.pone.0036760 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    APHA. in Standard Methods for the Examination of Water and Wastewater 20th edn (ed M. A. H. Franson) 148–149 (American Public Health Association, 1998).

  • 62.

    Newell, S., Arsuffi, T. & Fallon, R. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl. Environ. Microbiol. 54, 1876–1879 (1988).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Suberkropp, K. & Weyers, H. Application of fungal and bacterial production methodologies to decomposing leaves in streams. Appl. Environ. Microbiol. 62, 1610–1615 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Ieno, E. N. & Zuur, A. F. A Beginner’s Guide to Data Exploration and Visualisation with R (Highland Statistics Limited, Newburgh, 2015).

    Google Scholar 

  • 65.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experients. Nature 412, 72–76. https://doi.org/10.1111/j.1365-2427.2008.02092.x (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 66.

    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • 67.

    boot: Bootstrap R (S-Plus) Functions. R Package Version 1.3–18 (Vienna: R Foundation for Statistical Computing, 2016).

  • 68.

    R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed