in

Emergent dispersal networks in dynamic wetlandscapes

  • 1.

    Gibbs, J. P. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 13(1), 25–31 (1993).

    Google Scholar 

  • 2.

    Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. Nature 453(7192), 220–222 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: A community perspective. Ecology 84(8), 2007–2020 (2003).

    Google Scholar 

  • 4.

    Niebuhr, B. B. et al. Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Sci. Rep. 5, 11898 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Deal, E., Braun, J. & Botter, G. Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency. J. Geophys. Res. Earth Surf. 123(4), 744–778 (2018).

    ADS  Google Scholar 

  • 6.

    Kadoya, T. Assessing functional connectivity using empirical data. Popul. Ecol. 51(1), 5–15 (2009).

    Google Scholar 

  • 7.

    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42(1–2), 3–16 (1991).

    Google Scholar 

  • 8.

    Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167(6), 913–924 (2006).

    PubMed  Google Scholar 

  • 9.

    Koelle, K. & Vandermeer, J. Dispersal-induced desynchronization: From metapopulations to metacommunities. Ecol. Lett. 8(2), 167–175 (2005).

    Google Scholar 

  • 10.

    Foltête, J. C., Clauzel, C., Vuidel, G. & Tournant, P. Integrating graph-based connectivity metrics into species distribution models. Landsc. Ecol. 27(4), 557–569 (2012).

    Google Scholar 

  • 11.

    Tournant, P., Afonso, E., Roué, S., Giraudoux, P. & Foltête, J. C. Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol. Cons. 164, 39–49 (2013).

    Google Scholar 

  • 12.

    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27(1), 337–363 (1996).

    Google Scholar 

  • 13.

    Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10(11), 809–815 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Rains, M. C. et al. Geographically isolated wetlands are part of the hydrological landscape. Hydrol. Process. 30(1), 153–160 (2016).

    ADS  Google Scholar 

  • 15.

    Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15(3), 237–240 (1969).

    Google Scholar 

  • 16.

    Gilpin, M. (ed.) Metapopulation Dynamics: Empirical and Theoretical Investigations (Academic Press, New York, 2012).

    Google Scholar 

  • 17.

    Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14(1), 314–317 (2000).

    Google Scholar 

  • 18.

    Boughton, E. H., Quintana-Ascencio, P. F., Bohlen, P. J., Jenkins, D. G. & Pickert, R. Land-use and isolation interact to affect wetland plant assemblages. Ecography 33(3), 461–470 (2010).

    Google Scholar 

  • 19.

    Smith, L. L. et al. Biological connectivity of seasonally ponded wetlands across spatial and temporal scales. JAWRA J. Am. Water Resour. Assoc. 55(2), 334–353 (2019).

    ADS  Google Scholar 

  • 20.

    Le, P. V. & Kumar, P. Power law scaling of topographic depressions and their hydrologic connectivity. Geophys. Res. Lett. 41(5), 1553–1559 (2014).

    ADS  Google Scholar 

  • 21.

    Bertassello, L. E. et al. Wetlandscape fractal topography. Geophys. Res. Lett. 45(14), 6983–6991 (2018).

    ADS  Google Scholar 

  • 22.

    Hurst, H. E. (1965). Long term storage. An experimental study.

  • 23.

    Mandelbrot, B. B. (1975). Les objets fractals: forme, hasard et dimension.

  • 24.

    Keitt, T. H. Spectral representation of neutral landscapes. Landsc. Ecol. 15(5), 479–494 (2000).

    Google Scholar 

  • 25.

    Park, J., Botter, G., Jawitz, J. W. & Rao, P. S. C. Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of hydro-climatic forcing and wetland bathymetry. Adv. Water Resour. 69, 38–48 (2014).

    ADS  Google Scholar 

  • 26.

    Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Aubeneau, A. F. & Botter, G. Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography. Hydrol. Process. 2, 2 (2019).

    Google Scholar 

  • 27.

    Wu, Q. et al. Efficient delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method. JAWRA J. Am. Water Resour. Assoc. 55(2), 354–368 (2019).

    ADS  Google Scholar 

  • 28.

    Saura, S. & Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc. Urban Plan. 83(2–3), 91–103 (2007).

    Google Scholar 

  • 29.

    Bunn, A. G., Urban, D. L. & Keitt, T. H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 59(4), 265–278 (2000).

    Google Scholar 

  • 30.

    Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82(5), 1205–1218 (2001).

    Google Scholar 

  • 31.

    Fortuna, M. A., Gómez-Rodríguez, C. & Bascompte, J. Spatial network structure and amphibian persistence in stochastic environments. Proc. R. Soc. B Biol. Sci. 273(1592), 1429–1434 (2006).

    Google Scholar 

  • 32.

    Hayashi, M. & Van der Kamp, G. Simple equations to represent the volume–area–depth relations of shallow wetlands in small topographic depressions. J. Hydrol. 237(1–2), 74–85 (2000).

    ADS  Google Scholar 

  • 33.

    Rittenhouse, T. A. & Semlitsch, R. D. Distribution of amphibians in terrestrial habitat surrounding wetlands. Wetlands 27(1), 153–161 (2007).

    Google Scholar 

  • 34.

    Osher, S. & Fedkiw, R. P. Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  • 35.

    National Map Viewer. Available online: https://viewer.nationalmap.gov (accessed on July 2018).

  • 36.

    Gallant, J. C., Moore, I. D., Hutchinson, M. F. & Gessler, P. Estimating fractal dimension of profiles: A comparison of methods. Math. Geol. 26(4), 455–481 (1994).

    Google Scholar 

  • 37.

    Voss, R. F. Fractals in nature: from characterization to simulation. In The Science of Fractal Images 21–70 (Springer, New York, 1988).

    Google Scholar 

  • 38.

    Russ, J. C. Fractal Surfaces (Plenum, New York, 1994).

    Google Scholar 

  • 39.

    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88(2), 310–326 (2013).

    PubMed  Google Scholar 

  • 40.

    Zamberletti, P., Zaffaroni, M., Accatino, F., Creed, I. F. & De Michele, C. Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes. Ecol. Model. 384, 119–127 (2018).

    Google Scholar 

  • 41.

    Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).

    ADS  MathSciNet  PubMed  MATH  Google Scholar 

  • 42.

    Cox, D. & Lewis, P. The statistical analysis of series of events. Popul. Sci https://doi.org/10.1007/978-94-011-7801-3 (1966).

    Article  MATH  Google Scholar 

  • 43.

    Diggle, P. J. Statistical methods for spatial point patterns in ecology. Spat. Tempor. Anal. Ecol. 2, 99–150 (1979).

    Google Scholar 

  • 44.

    Diggle, P. J. Statistical analysis of spatial and spatio-temporal point patterns (CRC Press, Boca Raton, 2013).

    Google Scholar 

  • 45.

    Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions?. Proc. Natl. Acad. Sci. 113, 1978–1986. https://doi.org/10.1073/pnas.1512650113 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 46.

    Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol. Cons. 144(1), 44–55 (2011).

    Google Scholar 

  • 47.

    Gustafson, E. J. How has the state of art for quantification of landscape patterns advanced in the twenty first century?. Landscape Ecol. 34, 2065–2202 (2019).

    Google Scholar 

  • 48.

    Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M. & Rao, P. S. C. Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. Sci. Rep. 9(1), 1–10 (2019).

    ADS  Google Scholar 

  • 49.

    Werner, E. E., Skelly, D. K., Relyea, R. A. & Yurewicz, K. L. Amphibian species richness across environmental gradients. Oikos 116, 1697–1712. https://doi.org/10.1111/j.0030-1299 (2007).

    Article  Google Scholar 

  • 50.

    Kantrud, H. A. & Stewart, R. E. Use of natural basin wetlands by breeding waterfowl in North Dakota. J. Wildlife Manag. 2, 243–253 (1977).

    Google Scholar 

  • 51.

    Euliss, N. H. et al. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 24, 448–458. https://doi.org/10.1672/0277-5212(2004)024 (2004).

    Article  Google Scholar 

  • 52.

    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).

    Google Scholar 

  • 53.

    Kuefler, D., Hudgens, B., Haddad, N. M., Morris, W. F. & Thurgate, N. The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91(4), 944–950 (2010).

    PubMed  Google Scholar 

  • 54.

    Winter, T. C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 7(1), 28–45. https://doi.org/10.1007/s100400050178 (1999).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model