in

Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle

  • 1.

    Ekesi, S., Chabi-Olaye, A., Subramanian, S. & Borgemeister, C. Horticultural pest management and the African economy: successes, challenges and opportunities in a changing global environment. Acta Hortic. 911, 165–183 (2011).

    Article  Google Scholar 

  • 2.

    Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Secur. 14, 31–37 (2017).

    Article  Google Scholar 

  • 3.

    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).

    Article  Google Scholar 

  • 4.

    Idriss, G. E. A. et al. Host range and effects of plant species on preference and fitness of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa002 (2020).

    Article  PubMed  Google Scholar 

  • 5.

    Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).

    PubMed  Article  Google Scholar 

  • 6.

    Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).

    Article  Google Scholar 

  • 8.

    Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).

    Article  Google Scholar 

  • 9.

    Dimbi, S., Maniania, N. K. & Ekesi, S. Horizontal transmission of Metarhizium anisopliae in fruit flies and effect of fungal infection on egg laying and fertility. Insects 4, 206–216 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Maniania, N. K., Ekesi, S. & Dolinski, C. Entomopathogens routinely used in pest control strategies: orchards in tropical climate. In Microbial Control of Insect and Mite Pests: From Theory to Practice (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-803527-6.00018-4.

  • 11.

    Mweke, A. et al. Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). J. Econ. Entomol. 111, 1587–1594 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Akutse, K. S. et al. Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 143, 626–634 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. https://doi.org/10.1111/jen.12812 (2020).

    Article  Google Scholar 

  • 14.

    Inglis, G. D., Goettel, M. S., Butt, T. M. & Strasser, H. Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential (eds. Butt, T. M. & Magan, M.) 23–69 (2001). https://doi.org/10.1079/9780851993560.0023.

  • 15.

    Behie, S. W. & Bidochka, M. J. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ. Microbiol. 80, 1553–1560 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Akutse, K. S., Khamis, F. M., Ekesi, S., Wekesa, S. & Subramanian, S. Effect of endophytically-colonized tomato and nightshade host plants on life-history parameters of Tuta absoluta (Lepidoptera: Gelechiidae). (International Congress on Invertebrate Pathology and Microbial Control and 52nd Annual Meeting of the Society for Invertebrate Pathology & 17th Meeting of the IOBC‐WPRS Working Group “Microbial and Nematode Control of Invertebrate Pests”, 2019).

  • 17.

    Wilson, D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274–276 (1995).

    Article  Google Scholar 

  • 18.

    Quesada-Moraga, E., Muñoz-Ledesma, F. J. & Santiago-Álvarez, C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol. 38, 723–730 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Latz, M. A. C., Jensen, B., Collinge, D. B. & Jørgensen, H. J. L. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers. 11, 555–567 (2018).

    Article  Google Scholar 

  • 21.

    Ownley, B. H. et al. Beauveria bassiana: endophytic colonization and plant disease control. J. Invertebr. Pathol. 98, 267–270 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Akello, J. & Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 61, 215–221 (2012).

    Article  Google Scholar 

  • 23.

    Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J. & Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 6, 293–301 (2013).

    Article  Google Scholar 

  • 24.

    Russo, M. L. et al. Endophytic effects of Beauveria bassiana on Corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 10, 2–9 (2019).

    Article  Google Scholar 

  • 25.

    Lahrmann, U. et al. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc. Natl. Acad. Sci. USA 110, 13965–13970 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Fadiji, A. E. & Babalola, O. O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8, 1–20 (2020).

    Article  Google Scholar 

  • 27.

    Gathage, J. W. et al. Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. Biocontrol 61, 741–753 (2016).

    Article  Google Scholar 

  • 28.

    Muvea, A. M. et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 9, 1–7 (2014).

    Article  CAS  Google Scholar 

  • 29.

    Powell, W. A., Klingeman, W. E., Ownley, B. H. & Gwinn, K. D. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J. Entomol. Sci. 44, 391–396 (2009).

    Article  Google Scholar 

  • 30.

    Klieber, J. & Reineke, A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J. Appl. Entomol. 140, 580–589 (2016).

    CAS  Article  Google Scholar 

  • 31.

    Resquín-romero, G., Garrido-jurado, I., Delso, C., Ríos-moreno, A. & Quesada-moraga, E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 136, 23–31 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 32.

    Mutune, B. et al. Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on beans Phaseolus vulgaris. J. Pest Sci. 89, 993–1001 (2016).

    Article  Google Scholar 

  • 33.

    Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. & Vega, F. E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 111, 748–757 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Bing, L. A. & Lewis, L. C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ. Entomol. 20, 1207–1211 (1991).

    Article  Google Scholar 

  • 35.

    Behie, S. W., Jones, S. J., Bidochka, M. J. & Hyde, K. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 13, 112–119 (2015).

    Article  Google Scholar 

  • 36.

    Akello, J. et al. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J. Invertebr. Pathol. 96, 34–42 (2007).

    PubMed  Article  Google Scholar 

  • 37.

    Posada, F. J. & Vega, F. E. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens. J. Insect Sci. 5, 1–10 (2005).

    Article  Google Scholar 

  • 38.

    Demers, J. E., Gugino, B. K. & del Jiménez-Gasco, M. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl. Environ. Microbiol. 81, 81–90 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 39.

    Bogner, C. W. et al. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Prog. 15, 1–17 (2016).

    Article  Google Scholar 

  • 40.

    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Martin, J. T. Role of cuticle in the defense against plant disease. Annu. Rev. Phytopathol. 2, 81–100 (1964).

    Article  Google Scholar 

  • 42.

    Jensen, R. E., Enkegaard, A. & Steenberg, T. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14, 1–12 (2019).

    Google Scholar 

  • 43.

    Landa, B. B. et al. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J. Invertebr. Pathol. 114, 128–138 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Bing, L. A. & Lewis, L. C. Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: The influence of the plant growth stage and Ostrinia nubilalis (Hubner). Biocontrol Sci. Technol. 2, 39–47 (1992).

    Article  Google Scholar 

  • 45.

    Greenfield, M. et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol. Control 95, 40–48 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Card, S., Johnson, L., Teasdale, S. & Caradus, J. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 92, 1–19 (2016).

    Article  CAS  Google Scholar 

  • 47.

    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Publ. Gr. 11, 789–799 (2013).

    CAS  Google Scholar 

  • 48.

    Tumuhaise, V. et al. Pathogenicity and performance of two candidate isolates of Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) in four liquid culture media for the management of the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). Int. J. Trop. Insect Sci. 35, 34–47 (2015).

    Article  Google Scholar 

  • 49.

    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, 1–7 (2019).

    Article  CAS  Google Scholar 

  • 50.

    Barelli, L., Moreira, C. C. & Bidochka, M. J. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164, 1531–1540 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Wyrebek, M., Huber, C., Sasan, R. K. & Bidochka, M. J. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology 157, 2904–2911 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Muvea, A. M. et al. Behavioral responses of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 88, 555–562 (2015).

    Article  Google Scholar 

  • 53.

    Slansky, F. Jr. Insect nutrition: an adaptationist’s perspective. Florida Entomol. 65, 45–71 (1982).

    Article  Google Scholar 

  • 54.

    Carroll, G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2–9 (1988).

    Article  Google Scholar 

  • 55.

    Allegrucci, N., Velazquez, M. S., Russo, M. L., Perez, E. & Scorsetti, A. C. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera : Gelechiidae). J. Plant Prot. Res. 54, 331–337 (2017).

    Google Scholar 

  • 56.

    Barta, M. In planta bioassay on the effects of endophytic Beauveria strains against larvae of horse-chestnut leaf miner (Cameraria ohridella). Biol. Control 121, 88–98 (2018).

    Article  Google Scholar 

  • 57.

    Russo, M. L. et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud Univ. Sci. 31, 728–736 (2018).

    Article  Google Scholar 

  • 58.

    Contreras-cornejo, H. A., Macías-rodríguez, L. & Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 124, 45–53 (2017).

    Article  Google Scholar 

  • 59.

    Contreras-Cornejo, H. A., Macías-Rodríguez, L., Del Val, E. & Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92, 1–17 (2016).

    Article  CAS  Google Scholar 

  • 60.

    Coppola, M. et al. Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci. 24, 1025–1033 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Meera, M. S., Shivanna, M. B., Kageyama, K. & Hyakumachi, M. Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot. 14, 123–130 (1995).

    Article  Google Scholar 

  • 62.

    Lewis, L. C., Berry, E. C., Obrycki, J. J. & Bing, L. A. Aptness of insecticides (Bacillus thuringiensis and carbofuran ) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agric. Ecosyst. Environ. 57, 27–34 (1996).

    Article  Google Scholar 

  • 63.

    Qayyum, M. A., Wakil, W., Arif, M. J., Sahi, S. T. & Dunlap, C. A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 90, 200–207 (2015).

    Article  Google Scholar 

  • 64.

    Jallow, M. F. A., Dugassa-Gobena, D. & Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod. Plant. Interact. 2, 53–62 (2008).

    Article  Google Scholar 

  • 65.

    Jaber, L. R. & Vidal, S. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol. Entomol. 35, 25–36 (2010).

    Article  Google Scholar 

  • 66.

    Davis, T. S., Crippen, T. L., Hofstetter, R. W. & Tomberlin, J. K. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840–859 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Silva, D. B., Bueno, V. H. P., Lins, J. C. & Van Lenteren, J. C. Life history data and population growth of Tuta absoluta at constant and alternating temperatures on two tomato lines. Bull. Insectol. 68, 223–232 (2015).

    Google Scholar 

  • 68.

    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).

    PubMed  Article  Google Scholar 

  • 69.

    Dash, C. K. et al. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 125, 385–392 (2018).

    PubMed  Article  Google Scholar 

  • 70.

    Akello, J., Dubois, T., Coyne, D. & Kyamanywa, S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot. 27, 1437–1441 (2008).

    Article  Google Scholar 

  • 71.

    Golo, P. S. et al. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS ONE 9, 1–9 (2014).

    Article  CAS  Google Scholar 

  • 72.

    Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology (1997). https://doi.org/10.1016/B978-012432555-5/50013-0.

  • 73.

    Schulz, B., Guske, S., Dammann, U. & Boyle, C. Endophyte-host interactions. II. Defining symbiosis of the endophyte–host interaction. Symbiosis 25, 213–227 (1998).

    Google Scholar 

  • 74.

    Inglis, G. D., Enkerli, J. & Goettel, M. S. Laboratory Techniques Used for Entomopathogenic Fungi. Hypocreales. Manual of Techniques in Invertebrate Pathology (Elsevier, New York, 2012). https://doi.org/10.1016/B978-0-12-386899-2.00007-5

    Google Scholar 

  • 75.

    Petrini, O. & Fisher, P. J. Fungal endophytes in Salicornia perennis. Trans. Br. Mycol. Soc. 87, 647–651 (1986).

    Article  Google Scholar 

  • 76.

    Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).

    Article  CAS  Google Scholar 

  • 77.

    Oliveira, F. A., da Silva, D. J. H., Leite, G. L. D., Jham, G. N. & Picanço, M. Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Sci. Hortic. (Amsterdam) 119, 182–187 (2009).

    CAS  Article  Google Scholar 

  • 78.

    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet  MATH  Article  Google Scholar 

  • 79.

    De Mendiburu, F. agricolae: statistical procedures for agricultural research. R package version 1.3–2 https://CRAN.R-project.org/package=agricolae (2020).

  • 80.

    Therneau, T. A Package for Survival Analysis in R. R package version 3.1-12, https://CRAN.R-project.org/package=survival. (2020).

  • 81.

    Crawley, M. J. The R Book (Wiley, New York, 2007). https://doi.org/10.1002/9780470515075.

    Google Scholar 

  • 82.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 


  • Source: Ecology - nature.com

    European rivers are fragmented by many more barriers than had been recorded

    Want cheaper nuclear energy? Turn the design process into a game