in

Entrainment of circadian rhythms of locomotor activity by ambient temperature cycles in the dromedary camel

  • 1.

    Aschoff, J. Circadian activity pattern with two peaks. Ecology 47, 657–662 (1966).

    Article  Google Scholar 

  • 2.

    Daan, S. & Aschoff, J. Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia 18, 269–316 (1975).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Katandukila, J. V., Bennett, N. C., Chimimba, C. T., Faulkes, C. G. & Oosthuizen, M. K. Locomotor activity patterns of captive East African root rats, Tachyoryctes splendens (Rodentia: Spalacidae), from Tanzania, East Africa. J. Mamm. 94, 1393–1400 (2013).

    Article  Google Scholar 

  • 4.

    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 13727–13732 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Cloudsley-Thompson, J. L. Rhythmic Activity in Animal Physiology and Behaviour (Academic Press, Cambridge, 1961).

    Google Scholar 

  • 6.

    Aschoff, J., Gercke, H., Pohl, P., Rieger, P. V. & Wever, S. P. U. R. Interdependent parameters of circadian activity rhythms in birds and man. In Biochronometry (ed. Menaker, M.) 3–29 (National Academy of Science, Washington, DC, 1971).

    Google Scholar 

  • 7.

    Risenhoover, K. L. Winter activity patterns of moose in interior Alaska. J. Wildl. Manage. 50, 727–734 (1986).

    Article  Google Scholar 

  • 8.

    Castillo-Ruiz, A., Paul, M. J. & Schwartz, W. J. In search of a temporal niche: Social interactions. Prog. Brain Res. 199, 267–280 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0248 (2017).

    Article  Google Scholar 

  • 10.

    Farsi, H. et al. Validation of locomotion scoring as a new and inexpensive technique to record circadian locomotor activity in large mammals. Heliyon 4, e00980–e00980 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    El Allali, K. et al. Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans. Chronobiol. Int. 36, 1047–1057 (2019).

    Article  PubMed  Google Scholar 

  • 12.

    Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A. & Houpt, T. R. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188, 103–112 (1957).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Bouâouda, H. et al. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions. Physiol. Rep. 2, e12151 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    El Allali, K. et al. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius). Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1044–R1052 (2013).

    Article  CAS  PubMed  Google Scholar 

  • 15.

    Farsi, H. et al. Melatonin rhythm and other outputs of the master circadian clock in the desert goat (Capra hircus) are entrained by daily cycles of ambient temperature. J. Pineal Res. 68, e12634 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Ebling, F. J., Lincoln, G. A., Wollnik, F. & Anderson, N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J. Biol. Rhythms 3, 365–384 (1988).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Johnson, R. F., Randall, S. & Randall, W. Freerunning and entrained circadian rhythms in activity, eating and drinking in the cat. J. Interdiscipl. Cycle Res. 14, 315–327 (1983).

    Article  Google Scholar 

  • 18.

    Jilge, B., Hörnicke, H. & Stähle, H. Circadian rhythms of rabbits during restrictive feeding. Am. J. Physiol. 253, R46–R54 (1987).

    CAS  PubMed  Google Scholar 

  • 19.

    Decoursey, G. & Decoursey, P. J. Adaptive aspects of activity rhythms in bats. Biol. Bull. 126, 14–27 (1964).

    Article  Google Scholar 

  • 20.

    Erkert, H. G., Nagel, B. & Stephani, I. Light and social effects on the free-running circadian activity rhythm in common marmosets (Callithrix jacchus; Primates): Social masking, pseudo-splitting, and relative coordination. Behav. Ecol. Sociobiol. 18, 443–452 (1986).

    Article  Google Scholar 

  • 21.

    O’Reilly, H., Armstrong, S. M. & Coleman, G. J. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei. Physiol. Behav. 38, 471–476 (1986).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Boulos, Z., Frim, D. M., Dewey, L. K. & Moore-Ede, M. C. Effects of restricted feeding schedules on circadian organization in squirrel monkeys. Physiol. Behav. 45, 507–515 (1989).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Mahoney, M., Bult, A. & Smale, L. Phase response curve and light-induced fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J. Biol. Rhythms 16, 149–162 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Alagaili, A. N., Bennett, N. C., Amor, N. M. & Hart, D. W. The locomotory activity patterns of the arid-dwelling desert hedgehog, Paraechinus aethiopicus, from Saudi Arabia. J. Arid Environ. 177, 104141 (2020).

    ADS  Article  Google Scholar 

  • 25.

    Verwey, M., Robinson, B. & Amir, S. Recording and analysis of circadian rhythms in running-wheel activity in rodents. J. Vis. Exp. https://doi.org/10.3791/50186 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Refinetti, R. Early research on circadian rhythms. In Circadian Physiology 2nd edn (ed. Refinetti, R.) 1–667 (CRC Taylor and Frabcis Group, Boca Raton, 2006).

    Google Scholar 

  • 27.

    Goldman, B. D., Goldman, S. L., Riccio, A. P. & Terkel, J. Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. J. Biol. Rhythms 12, 348–361 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Kopp, C. et al. Effects of a daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiol. Behav. 63, 577–585 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Giannetto, C., Casella, S., Caola, G. & Piccione, G. Photic and non-photic entrainment on daily rhythm of locomotor activity in goats. Anim. Sci. J. 81, 122–128 (2010).

    Article  PubMed  Google Scholar 

  • 30.

    Piccione, G., Giannetto, C., Casella, S. & Caola, G. Daily locomotor activity in five domestic animals. Anim. Biol. 60, 15–24 (2010).

    Article  Google Scholar 

  • 31.

    Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y. & Ibata, Y. The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res. Bull. 31, 637–640 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Jacomy, H., Burlet, A. & Bosler, O. Vasoactive intestinal peptide neurons as synaptic targets for vasopressin neurons in the suprachiasmatic nucleus. Double-label immunocytochemical demonstration in the rat. Neuroscience 88, 859–870 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Reppert, S. M. & Weaver, D. R. Comparing clockworks: Mouse versus fly. J. Biol. Rhythms 15, 357–364 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Okamura, H., Yamaguchi, S. & Yagita, K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 309, 47–56 (2002).

    CAS  Article  Google Scholar 

  • 40.

    Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Rensing, L. & Ruoff, P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19, 807–864 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Aschoff, J. & Tokura, H. Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles 1. J. Biol. Rhythms 1, 91–99 (1986).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Pálková, M., Sigmund, L. & Erkert, H. G. Effect of ambient temperature on the circadian activity rhythm in common marmosets, Callithrix j jacchus (primates). Chronobiol. Int. 16, 149–161 (1999).

    Article  PubMed  Google Scholar 

  • 45.

    Rajaratnam, S. M. W. & Redman, J. R. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol. Behav. 63, 271–277 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Refinetti, R. Entrainment of circadian rhythm by ambient temperature cycles in mice. J. Biol. Rhythms 25, 247–256 (2010).

    Article  Google Scholar 

  • 47.

    van Jaarsveld, B., Bennett, N. C., Hart, D. W. & Oosthuizen, M. K. Locomotor activity and body temperature rhythms in the Mahali mole-rat (C. h. mahali): The effect of light and ambient temperature variations. J. Therm. Biol. 79, 24–32 (2019).

    Article  Google Scholar 

  • 48.

    Schmidt-Nielsen, K. The physiology of the camel. Sci. Am. 201, 140–151 (1959).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Wu, H. et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Samara, E. M. Unraveling the relationship between the topographic distribution patterns of skin temperature and perspiration response in dromedary camels. J. Therm. Biol 84, 311–315 (2019).

    Article  PubMed  Google Scholar 

  • 51.

    Tibary, A. & El Allali, K. Dromedary camel: A model of heat resistant livestock animal. Theriogenology 154, 203–211 (2020).

    Article  PubMed  Google Scholar 

  • 52.

    Lindberg, R. G. & Hayden, P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia 1, 356–361 (1974).

    CAS  PubMed  Google Scholar 

  • 53.

    Erkert, H. G. & Rothmund, E. Differences in temperature sensitivity of the circadian systems of homoeothermic and heterothermic neotropical bats. Comp. Biochem. Physiol. 68A, 383–390 (1980).

    Google Scholar 

  • 54.

    Pohl, H. Temperature cycles as zeitgeber for the circadian clock of two burrowing rodents, the normothermic antelope ground squirrel and the heterothermic Syrian Hamster. Biol. Rhythm Res. 29, 311–325 (1998).

    Article  Google Scholar 

  • 55.

    Cain, J. W., Krausman, P. R., Rosenstock, S. S. & Turner, J. C. Mechanisms of thermoregulation and water balance in Desert Ungulates. Wildl. Soc. Bull. 1973–2006(34), 570–581 (2006).

    Article  Google Scholar 

  • 56.

    Mengistu, U., Dahlborn, K. & Olsson, K. Mechanisms of water economy in lactating Ethiopian Somali goats during repeated cycles of intermittent watering. Anim. Int. J. Anim. Biosci. 1, 1009–1017 (2007).

    CAS  Article  Google Scholar 

  • 57.

    Gauthier-Pilters, H. Aspects of dromedary ecology and ethology. In The Camelid (ed. Cockrill, W. R.) (Scandinavian Institute of African Studies, Uppsala, 1984).

    Google Scholar 

  • 58.

    Miller, G. D., Cochran, M. H. & Smith, E. L. Nighttime activity of desert bighorn sheep. Desert Bighorn Council Trans. 28, 23–25 (1984).

    Google Scholar 

  • 59.

    Hayes, C. L. & Krausman, P. R. Nocturnal activity of female desert mule deer. J. Wildl. Manage. 57, 897–904 (1993).

    Article  Google Scholar 

  • 60.

    Davimes, J. G. et al. Temporal niche switching in Arabian oryx (Oryx leucoryx): Seasonal plasticity of 24h activity patterns in a large desert mammal. Physiol. Behav. 177, 148–154 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Davimes, J. G. et al. Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. Sleep https://doi.org/10.1093/sleep/zsy038 (2018).

    Article  PubMed  Google Scholar 

  • 62.

    El Allali, K. et al. Seasonal variations in the nycthemeral rhythm of plasma melatonin in the camel (Camelus dromedarius). J. Pineal Res. 39, 121–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  • 63.

    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Phase shift produced by low temperature. J. Comp. Physiol. 136, 349–353 (1980).

    Article  Google Scholar 

  • 64.

    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Experiments with food deprivation and effects of temperature on periodicity. J. Comp. Physiol. 136, 355–360 (1980).

    Article  Google Scholar 

  • 65.

    Mrosovsky, N. Thermal effects on the periodicity, phasing and peristance of circannual cycles. In Living in the Cold (eds Heller, H. C. et al.) 403–410 (Elsevier, New York, 1986).

    Google Scholar 

  • 66.

    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: fall and spring cold pulses. J. Comp. Physiol. 167, 683–689 (1990).

    Article  Google Scholar 

  • 67.

    Canguilhem, B., Schieber, J. P. & Koch, A. Circannual weight rhythm of the European hamster (Cricetus cricetus). Respective influence of the photoperiod and external temperature during its course. Arch. Sci. Physiol. 27, 67–90 (1973).

    CAS  Google Scholar 

  • 68.

    Jallageas, M. & Assenmacher, I. External factors controlling annual testosterone and thyroxine cycles in the edible dormouse Glis glis. Comp. Biochem. Physiol. A Physiol. 77, 161–167 (1984).

    CAS  Article  Google Scholar 

  • 69.

    Touitou, Y., Smolensky, M. H. & Portaluppi, F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 23, 1083–1096 (2006).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool