Aschoff, J. Circadian activity pattern with two peaks. Ecology 47, 657–662 (1966).
Daan, S. & Aschoff, J. Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia 18, 269–316 (1975).
Katandukila, J. V., Bennett, N. C., Chimimba, C. T., Faulkes, C. G. & Oosthuizen, M. K. Locomotor activity patterns of captive East African root rats, Tachyoryctes splendens (Rodentia: Spalacidae), from Tanzania, East Africa. J. Mamm. 94, 1393–1400 (2013).
Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 13727–13732 (2014).
Cloudsley-Thompson, J. L. Rhythmic Activity in Animal Physiology and Behaviour (Academic Press, Cambridge, 1961).
Aschoff, J., Gercke, H., Pohl, P., Rieger, P. V. & Wever, S. P. U. R. Interdependent parameters of circadian activity rhythms in birds and man. In Biochronometry (ed. Menaker, M.) 3–29 (National Academy of Science, Washington, DC, 1971).
Risenhoover, K. L. Winter activity patterns of moose in interior Alaska. J. Wildl. Manage. 50, 727–734 (1986).
Castillo-Ruiz, A., Paul, M. J. & Schwartz, W. J. In search of a temporal niche: Social interactions. Prog. Brain Res. 199, 267–280 (2012).
Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0248 (2017).
Farsi, H. et al. Validation of locomotion scoring as a new and inexpensive technique to record circadian locomotor activity in large mammals. Heliyon 4, e00980–e00980 (2018).
El Allali, K. et al. Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans. Chronobiol. Int. 36, 1047–1057 (2019).
Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A. & Houpt, T. R. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188, 103–112 (1957).
Bouâouda, H. et al. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions. Physiol. Rep. 2, e12151 (2014).
El Allali, K. et al. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius). Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1044–R1052 (2013).
Farsi, H. et al. Melatonin rhythm and other outputs of the master circadian clock in the desert goat (Capra hircus) are entrained by daily cycles of ambient temperature. J. Pineal Res. 68, e12634 (2020).
Ebling, F. J., Lincoln, G. A., Wollnik, F. & Anderson, N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J. Biol. Rhythms 3, 365–384 (1988).
Johnson, R. F., Randall, S. & Randall, W. Freerunning and entrained circadian rhythms in activity, eating and drinking in the cat. J. Interdiscipl. Cycle Res. 14, 315–327 (1983).
Jilge, B., Hörnicke, H. & Stähle, H. Circadian rhythms of rabbits during restrictive feeding. Am. J. Physiol. 253, R46–R54 (1987).
Decoursey, G. & Decoursey, P. J. Adaptive aspects of activity rhythms in bats. Biol. Bull. 126, 14–27 (1964).
Erkert, H. G., Nagel, B. & Stephani, I. Light and social effects on the free-running circadian activity rhythm in common marmosets (Callithrix jacchus; Primates): Social masking, pseudo-splitting, and relative coordination. Behav. Ecol. Sociobiol. 18, 443–452 (1986).
O’Reilly, H., Armstrong, S. M. & Coleman, G. J. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei. Physiol. Behav. 38, 471–476 (1986).
Boulos, Z., Frim, D. M., Dewey, L. K. & Moore-Ede, M. C. Effects of restricted feeding schedules on circadian organization in squirrel monkeys. Physiol. Behav. 45, 507–515 (1989).
Mahoney, M., Bult, A. & Smale, L. Phase response curve and light-induced fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J. Biol. Rhythms 16, 149–162 (2001).
Alagaili, A. N., Bennett, N. C., Amor, N. M. & Hart, D. W. The locomotory activity patterns of the arid-dwelling desert hedgehog, Paraechinus aethiopicus, from Saudi Arabia. J. Arid Environ. 177, 104141 (2020).
Verwey, M., Robinson, B. & Amir, S. Recording and analysis of circadian rhythms in running-wheel activity in rodents. J. Vis. Exp. https://doi.org/10.3791/50186 (2013).
Refinetti, R. Early research on circadian rhythms. In Circadian Physiology 2nd edn (ed. Refinetti, R.) 1–667 (CRC Taylor and Frabcis Group, Boca Raton, 2006).
Goldman, B. D., Goldman, S. L., Riccio, A. P. & Terkel, J. Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. J. Biol. Rhythms 12, 348–361 (1997).
Kopp, C. et al. Effects of a daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiol. Behav. 63, 577–585 (1998).
Giannetto, C., Casella, S., Caola, G. & Piccione, G. Photic and non-photic entrainment on daily rhythm of locomotor activity in goats. Anim. Sci. J. 81, 122–128 (2010).
Piccione, G., Giannetto, C., Casella, S. & Caola, G. Daily locomotor activity in five domestic animals. Anim. Biol. 60, 15–24 (2010).
Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655 (2007).
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).
Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y. & Ibata, Y. The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res. Bull. 31, 637–640 (1993).
Jacomy, H., Burlet, A. & Bosler, O. Vasoactive intestinal peptide neurons as synaptic targets for vasopressin neurons in the suprachiasmatic nucleus. Double-label immunocytochemical demonstration in the rat. Neuroscience 88, 859–870 (1999).
Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).
Reppert, S. M. & Weaver, D. R. Comparing clockworks: Mouse versus fly. J. Biol. Rhythms 15, 357–364 (2000).
Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).
Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).
Okamura, H., Yamaguchi, S. & Yagita, K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 309, 47–56 (2002).
Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).
Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
Rensing, L. & Ruoff, P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19, 807–864 (2002).
Aschoff, J. & Tokura, H. Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles 1. J. Biol. Rhythms 1, 91–99 (1986).
Pálková, M., Sigmund, L. & Erkert, H. G. Effect of ambient temperature on the circadian activity rhythm in common marmosets, Callithrix j jacchus (primates). Chronobiol. Int. 16, 149–161 (1999).
Rajaratnam, S. M. W. & Redman, J. R. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol. Behav. 63, 271–277 (1998).
Refinetti, R. Entrainment of circadian rhythm by ambient temperature cycles in mice. J. Biol. Rhythms 25, 247–256 (2010).
van Jaarsveld, B., Bennett, N. C., Hart, D. W. & Oosthuizen, M. K. Locomotor activity and body temperature rhythms in the Mahali mole-rat (C. h. mahali): The effect of light and ambient temperature variations. J. Therm. Biol. 79, 24–32 (2019).
Schmidt-Nielsen, K. The physiology of the camel. Sci. Am. 201, 140–151 (1959).
Wu, H. et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188 (2014).
Samara, E. M. Unraveling the relationship between the topographic distribution patterns of skin temperature and perspiration response in dromedary camels. J. Therm. Biol 84, 311–315 (2019).
Tibary, A. & El Allali, K. Dromedary camel: A model of heat resistant livestock animal. Theriogenology 154, 203–211 (2020).
Lindberg, R. G. & Hayden, P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia 1, 356–361 (1974).
Erkert, H. G. & Rothmund, E. Differences in temperature sensitivity of the circadian systems of homoeothermic and heterothermic neotropical bats. Comp. Biochem. Physiol. 68A, 383–390 (1980).
Pohl, H. Temperature cycles as zeitgeber for the circadian clock of two burrowing rodents, the normothermic antelope ground squirrel and the heterothermic Syrian Hamster. Biol. Rhythm Res. 29, 311–325 (1998).
Cain, J. W., Krausman, P. R., Rosenstock, S. S. & Turner, J. C. Mechanisms of thermoregulation and water balance in Desert Ungulates. Wildl. Soc. Bull. 1973–2006(34), 570–581 (2006).
Mengistu, U., Dahlborn, K. & Olsson, K. Mechanisms of water economy in lactating Ethiopian Somali goats during repeated cycles of intermittent watering. Anim. Int. J. Anim. Biosci. 1, 1009–1017 (2007).
Gauthier-Pilters, H. Aspects of dromedary ecology and ethology. In The Camelid (ed. Cockrill, W. R.) (Scandinavian Institute of African Studies, Uppsala, 1984).
Miller, G. D., Cochran, M. H. & Smith, E. L. Nighttime activity of desert bighorn sheep. Desert Bighorn Council Trans. 28, 23–25 (1984).
Hayes, C. L. & Krausman, P. R. Nocturnal activity of female desert mule deer. J. Wildl. Manage. 57, 897–904 (1993).
Davimes, J. G. et al. Temporal niche switching in Arabian oryx (Oryx leucoryx): Seasonal plasticity of 24h activity patterns in a large desert mammal. Physiol. Behav. 177, 148–154 (2017).
Davimes, J. G. et al. Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. Sleep https://doi.org/10.1093/sleep/zsy038 (2018).
El Allali, K. et al. Seasonal variations in the nycthemeral rhythm of plasma melatonin in the camel (Camelus dromedarius). J. Pineal Res. 39, 121–128 (2005).
Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Phase shift produced by low temperature. J. Comp. Physiol. 136, 349–353 (1980).
Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Experiments with food deprivation and effects of temperature on periodicity. J. Comp. Physiol. 136, 355–360 (1980).
Mrosovsky, N. Thermal effects on the periodicity, phasing and peristance of circannual cycles. In Living in the Cold (eds Heller, H. C. et al.) 403–410 (Elsevier, New York, 1986).
Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: fall and spring cold pulses. J. Comp. Physiol. 167, 683–689 (1990).
Canguilhem, B., Schieber, J. P. & Koch, A. Circannual weight rhythm of the European hamster (Cricetus cricetus). Respective influence of the photoperiod and external temperature during its course. Arch. Sci. Physiol. 27, 67–90 (1973).
Jallageas, M. & Assenmacher, I. External factors controlling annual testosterone and thyroxine cycles in the edible dormouse Glis glis. Comp. Biochem. Physiol. A Physiol. 77, 161–167 (1984).
Touitou, Y., Smolensky, M. H. & Portaluppi, F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 23, 1083–1096 (2006).
Source: Ecology - nature.com