in

Environmental influences on foraging effort, success and efficiency in female Australian fur seals

  • 1.

    Chambers, L. E. et al. Observed and predicted effects of climate on Australian seabirds. Emu Austr. Ornithol. 111, 235–251. https://doi.org/10.1071/MU10033 (2011).

    Article  Google Scholar 

  • 2.

    Stephens, D. W. & Krebs, J. R. Foraging Theory Vol 1 (Princeton University Press, Princeton, 1986).

    Google Scholar 

  • 3.

    Costa, D. P. The relationship between reproductive and foraging energetics and the evolution of the Pinnipedia. Symp. Zool. Soc. Lond. 66, 293–314 (1993).

    Google Scholar 

  • 4.

    Weimerskirch, H., Le Corre, M., Jaquemet, S. & Marsac, F. Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Mar. Ecol. Prog. Ser. 288, 251–261. https://doi.org/10.3354/meps288251 (2005).

    ADS  Article  Google Scholar 

  • 5.

    Costa, D. P. A conceptual model of the variation in parental attendance in response to environmental fluctuation: Foraging energetics of lactating sea lions and fur seals. Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S44–S52. https://doi.org/10.1002/aqc.917 (2007).

    ADS  Article  Google Scholar 

  • 6.

    Villegas-Amtmann, S., McDonald, B. I., Páez-Rosas, D., Aurioles-Gamboa, D. & Costa, D. P. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion. Deep Sea Res. Part II Top. Stud. Oceanography 140, 94–104 (2017).

    ADS  Article  Google Scholar 

  • 7.

    Trillmich, F. & Limberger, D. Drastic effects of El Niño on Galapagos pinnipeds. Oecologia 67, 19–22 (1985).

    ADS  Article  Google Scholar 

  • 8.

    Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624. https://doi.org/10.1038/s41598-018-33057-y (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    IPCC. Summary for Policymakers. (2019).

  • 10.

    Cai, W., Shi, G., Cowan, T., Bi, D. & Ribbe, J. The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024701 (2005).

    Article  Google Scholar 

  • 11.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111. https://doi.org/10.1038/nclimate2100 (2014).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258. https://doi.org/10.1038/nature13327 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407 (2007).

    Google Scholar 

  • 14.

    Beentjes, M. P. & Renwick, J. A. The relationship between red cod, Pseudophycis bachus, recruitment and environmental variables in New Zealand. Environ. Biol. Fishes 61, 315–328. https://doi.org/10.1023/A:1010943906264 (2001).

    Article  Google Scholar 

  • 15.

    Hewitt, R. P., Theilacker, G. H. & Lo, N. C. H. Causes of mortality in young jack mackerel. Mar. Ecol. Prog. Ser. 26, 1–10 (1985).

    ADS  Article  Google Scholar 

  • 16.

    Rindorf, A., Wanless, S. & Harris, M. P. Effects of changes in sandeel availability on the reproductive output of seabirds. Mar. Ecol. Prog. Ser. 202, 241–252. https://doi.org/10.3354/meps202241 (2000).

    ADS  Article  Google Scholar 

  • 17.

    Wanless, S., Harris, M. P., Redman, P. & Speakman, J. R. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar. Ecol. Prog. Ser. 294, 1–8. https://doi.org/10.3354/meps294001 (2005).

    ADS  Article  Google Scholar 

  • 18.

    Carroll, M. J. et al. Kittiwake breeding success in the southern North Sea correlates with prior sandeel fishing mortality. Aquat. Conserv. Mar. Freshw. Ecosys. 27, 1164–1175. https://doi.org/10.1002/aqc.2780 (2017).

    Article  Google Scholar 

  • 19.

    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613. https://doi.org/10.1029/2007GL030393 (2007).

    ADS  Article  Google Scholar 

  • 20.

    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).

    Article  Google Scholar 

  • 21.

    Hobday, A. J. & Lough, J. M. Projected climate change in Australian marine and freshwater environments. Mar. Freshw. Res. 62, 1000–1014. https://doi.org/10.1071/MF10302 (2011).

    Article  Google Scholar 

  • 22.

    Johnson, C. R. et al. Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32. https://doi.org/10.1016/j.jembe.2011.02.032 (2011).

    Article  Google Scholar 

  • 23.

    Thompson, P. A., Baird, M. E., Ingleton, T. & Doblin, M. A. Long-term changes in temperate Australian coastal waters: Implications for phytoplankton. Mar. Ecol. Prog. Ser. 394, 1–19. https://doi.org/10.3354/meps08297 (2009).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).

    Article  Google Scholar 

  • 25.

    Robinson, L. M. et al. Rapid assessment of short-term datasets in an ocean warming hotspot reveals “high” confidence in potential range extensions. Glob. Environ. Change 31, 28–37 (2015).

    Article  Google Scholar 

  • 26.

    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268. https://doi.org/10.1111/j.1365-2656.2006.01148.x (2006).

    Article  PubMed  Google Scholar 

  • 27.

    27Warneke, R. M. & Shaughnessy, P. D. in Studies of Sea Mammals in South Latitudes 53–77 (1985).

  • 28.

    McIntosh, R. R. et al. Understanding meta-population trends of the Australian fur seal, with insights for adaptive monitoring. PLoS One 13, e0200253. https://doi.org/10.1371/journal.pone.0200253 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Gibbens, J. & Arnould, J. P. Y. Interannual variation in pup production and the timing of breeding in benthic foraging Australian fur seals. Mar. Mammal Sci. 25, 573–587. https://doi.org/10.1111/j.1748-7692.2008.00270.x (2009).

    Article  Google Scholar 

  • 30.

    Kirkwood, R. et al. Continued population recovery by Australian fur seals. Mar. Freshw. Res. 61, 695–701. https://doi.org/10.1071/MF09213 (2010).

    CAS  Article  Google Scholar 

  • 31.

    Arnould, J. P. Y. & Warneke, R. M. Growth and condition in Australian fur seals (Arctocephalus pusillus doriferus) (Carnivora: Pinnipedia). Aust. J. Zool. https://doi.org/10.1071/zo01077 (2002).

    Article  Google Scholar 

  • 32.

    Boness, D. J. & Bowen, W. D. The evolution of maternal care in pinnipeds. Bioscience 46, 645–654. https://doi.org/10.2307/1312894 (1996).

    Article  Google Scholar 

  • 33.

    Arnould, J. P. Y. & Hindell, M. A. Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can. J. Zool. 79, 35–48. https://doi.org/10.1139/cjz-79-1-35 (2001).

    Article  Google Scholar 

  • 34.

    Arnould, J. P. Y. & Kirkwood, R. Habitat selection by female Australian fur seals (Arctocephalus pusillus doriferus). Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S53–S67. https://doi.org/10.1002/aqc.908 (2008).

    Article  Google Scholar 

  • 35.

    Kirkwood, R., Hume, F. & Hindell, M. Sea temperature variations mediate annual changes in the diet of Australian fur seals in Bass Strait. Mar. Ecol. Prog. Ser. 369, 297–309. https://doi.org/10.3354/meps07633 (2008).

    ADS  Article  Google Scholar 

  • 36.

    Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038. https://doi.org/10.1111/j.1365-294X.2009.04158.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Gales, R., Pemberton, D., Lu, C. C. & Clarke, M. R. Cephalopod diet of the Australian fur seal: Variation due to location, season and sample type. Mar. Freshw. Res. 44, 657–671. https://doi.org/10.1071/MF9930657 (1993).

    Article  Google Scholar 

  • 38.

    Gibbs, C. F., Tomczak, M. Jr. & Longmore, A. R. Nutrient regime of Bass Strait. Aust. J. Mar. Freshw. Res. 37, 451–466 (1986).

    CAS  Article  Google Scholar 

  • 39.

    Sandery, P. A. & Kämpf, J. Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuar. Coast. Shelf Sci. 74, 684–696. https://doi.org/10.1016/j.ecss.2007.05.011 (2007).

    ADS  Article  Google Scholar 

  • 40.

    Sandery, P. A. & Kämpf, J. Winter-Spring flushing of Bass Strait, South-Eastern Australia: A numerical modelling study. Estuar. Coast. Shelf Sci. 63, 23–31. https://doi.org/10.1016/j.ecss.2004.10.009 (2005).

    ADS  Article  Google Scholar 

  • 41.

    Costa, D. P. & Gales, N. J. Energetics of a benthic diver: Seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol. Monogr. 73, 27–43 (2003).

    Article  Google Scholar 

  • 42.

    Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A. & Arnould, J. P. Y. When does physiology limit the foraging behaviour of freely diving mammals?. Int. Congr. Ser. 1275, 359–366. https://doi.org/10.1016/j.ics.2004.08.058 (2004).

    Article  Google Scholar 

  • 43.

    Arnould, J. P. Y. & Costa, D. Sea Lions of the World: Conservation and Research in the 21st Century 309–323 (Fairbanks, Alaska, 2006).

    Google Scholar 

  • 44.

    Welsford, D. C. & Lyle, J. M. Redbait (Emmelichthys nitidus): A Synopsis of Fishery and Biological Data (Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Hobart, 2003).

    Google Scholar 

  • 45.

    Smith-Vaniz, W. F. et al. Trachurus declivis. Report No. e.T20437665A67871520 (2018).

  • 46.

    Gaughan, D., Di Dario, F. & Hata, H. Sardinops sagax. Report No. e.T183347A143831586 (2018).

  • 47.

    Hume, F., Hindell, M. A., Pemberton, D. & Gales, R. Spatial and temporal variation in the diet of a high trophic level predator, the Australian fur seal (Arctocephalus pusillus doriferus). Mar. Biol. 144, 407–415. https://doi.org/10.1007/s00227-003-1219-0 (2004).

    Article  Google Scholar 

  • 48.

    Gibbens, J. & Arnould, J. P. Y. Age-specific growth, survival, and population dynamics of female Australian fur seals. Can. J. Zool. 87, 902–911 (2009).

    Article  Google Scholar 

  • 49.

    Hoskins, A. J. & Arnould, J. P. Y. Relationship between long-term environmental fluctuations and diving effort of female Australian fur seals. Mar. Ecol. Prog. Ser. 511, 285–295. https://doi.org/10.3354/meps10935 (2014).

    ADS  Article  Google Scholar 

  • 50.

    diveMove. R package version 1.4.5 (2019).

  • 51.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 52.

    Hoskins, A. J., Costa, D. P., Wheatley, K. E., Gibbens, J. R. & Arnould, J. P. Y. Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar. Ecol. Prog. Ser. 526, 227–239 (2015).

    ADS  Article  Google Scholar 

  • 53.

    Hoskins, A. J. & Arnould, J. P. Y. Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus). PLoS One 8, e79484. https://doi.org/10.1371/journal.pone.0079484 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Costa, D. P. & Gales, N. J. Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J. Exp. Biol. 203, 3655–3665 (2000).

    CAS  PubMed  Google Scholar 

  • 55.

    Volpov, B. L. et al. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video. Biol. Open 5, 262–271. https://doi.org/10.1242/bio.016659 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Nel, D. C. et al. Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217, 15–26. https://doi.org/10.3354/meps217015 (2001).

    ADS  Article  Google Scholar 

  • 57.

    Gibbs, C. F. Oceanography of Bass Strait: Implications for the food supply of little penguins Eudyptula minor. Emu Aust. Ornithol. 91, 395–401. https://doi.org/10.1071/MU9910395 (1991).

    Article  Google Scholar 

  • 58.

    Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardsone, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558. https://doi.org/10.4319/lo.2009.54.5.1548 (2009).

    ADS  Article  Google Scholar 

  • 59.

    Hoskins, A. J., Costa, D. P. & Arnould, J. P. Y. Utilisation of intensive foraging zones by female Australian fur seals. PLoS One 10, 1–19. https://doi.org/10.1371/journal.pone.0117997 (2015).

    CAS  Article  Google Scholar 

  • 60.

    Beggs, H. et al. RAMSSA—an operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature analysis over the Australian region. Aust. Meteorol. Oceanogr. J. 61, 1–22. https://doi.org/10.22499/2.6101.001 (2011).

    Article  Google Scholar 

  • 61.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018.

  • 62.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018.

  • 63.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014 (2016).

    ADS  Article  Google Scholar 

  • 64.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363. https://doi.org/10.1038/43854 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 65.

    Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 25, 151–169. https://doi.org/10.3354/cr025151 (2003).

    Article  Google Scholar 

  • 66.

    Neira, F. J., Lyle, J. M., Ewing, G. P., Keane, J. P. & Tracey, S. R. Evaluation of Egg Production as a Method of Estimating Spawning Biomass of Redbait off the East Coast of Tasmania (Institute for Marine, Tasmania, 2008).

    Google Scholar 

  • 67.

    Kemp, J., Jenkins, G. P. & Swearer, S. E. The reproductive strategy of red cod, Pseudophycis bachus, a key prey species for high trophic-level predators. Fish. Res. 125, 161–172. https://doi.org/10.1016/j.fishres.2012.02.021 (2012).

    Article  Google Scholar 

  • 68.

    Zuur, A., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).

    Article  Google Scholar 

  • 69.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).

    Google Scholar 

  • 70.

    nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–140 (2019).

  • 71.

    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall, London, 2017).

    Google Scholar 

  • 72.

    Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).

    MathSciNet  Article  Google Scholar 

  • 73.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).

    MathSciNet  Article  Google Scholar 

  • 74.

    MuMIn: Multi-Model Inference. R package version 1.43.6 (2019).

  • 75.

    Burnham, K. & Anderson, D. Model Selection and Multi-model Inference. 2nd (2002).

  • 76.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).

    ADS  Article  Google Scholar 

  • 77.

    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).

    Article  Google Scholar 

  • 78.

    Jones, T. et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45, 3193–3202. https://doi.org/10.1002/2017GL076164 (2018).

    ADS  Article  Google Scholar 

  • 79.

    Willis-Norton, E. et al. Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific. Deep Sea Res. Part II Top. Stud. Oceanography 113, 260–267. https://doi.org/10.1016/j.dsr2.2013.12.019 (2015).

    ADS  Article  Google Scholar 

  • 80.

    Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052032 (2012).

    Article  Google Scholar 

  • 81.

    Kliska, K. Environmental Correlates of Temporal Variation in the Diet of Australian fur Seals. Master of Research thesis, Macquarie University (2015).

  • 82.

    Tosh, C. A. et al. The importance of seasonal sea surface height anomalies for foraging juvenile southern elephant seals. Mar. Biol. 162, 2131–2140. https://doi.org/10.1007/s00227-015-2743-4 (2015).

    CAS  Article  Google Scholar 

  • 83.

    Foo, D., Hindell, M., McMahon, C. R. & Goldsworthy, S. D. Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes. Mar. Ecol. Prog. Ser. 628, 223–234. https://doi.org/10.3354/meps13113 (2019).

    ADS  CAS  Article  Google Scholar 

  • 84.

    Lovenduski, N. S. Impact of the southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett. https://doi.org/10.1029/2005gl022727 (2005).

    Article  Google Scholar 

  • 85.

    Middleton, J. F. et al. El Niño effects and upwelling off South Australia. J. Phys. Oceanogr. 37, 2458–2477. https://doi.org/10.1175/jpo3119.1 (2007).

    ADS  Article  Google Scholar 

  • 86.

    Armbrecht, L. H. et al. Phytoplankton composition under contrasting oceanographic conditions: Upwelling and downwelling (Eastern Australia). Cont. Shelf Res. 75, 54–67. https://doi.org/10.1016/j.csr.2013.11.024 (2014).

    ADS  Article  Google Scholar 

  • 87.

    Falkowski, P. & Kiefer, D. A. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res. 7, 715–731. https://doi.org/10.1093/plankt/7.5.715 (1985).

    CAS  Article  Google Scholar 

  • 88.

    Lanz, E., Nevarez-Martinez, M., López-Martínez, J. & Dworak, J. A. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and chlorophyll. CalCOFI Rep. 20, 134–146 (2009).

    Google Scholar 

  • 89.

    Ronconi, R. A. & Burger, A. E. Limited foraging flexibility: Increased foraging effort by a marine predator does not buffer against scarce prey. Mar. Ecol. Prog. Ser. 366, 245–258. https://doi.org/10.3354/meps07529 (2008).

    ADS  Article  Google Scholar 

  • 90.

    Kernaleguen, L. et al. From video recordings to whisker stable isotopes: A critical evaluation of timescale in assessing individual foraging specialisation in Australian fur seals. Oecologia 180, 657–670. https://doi.org/10.1007/s00442-015-3407-2 (2016).

    ADS  Article  PubMed  Google Scholar 

  • 91.

    Meyers, N. The Cost of a Meal: Foraging Ecology of Female Australian fur Seals. Master of Science in Marine Biological Resources (IMBRSea) thesis, Deakin University (2019).

  • 92.

    Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. https://doi.org/10.1029/2009gl037604 (2009).

    Article  Google Scholar 

  • 93.

    Sparling, C. E., Georges, J. Y., Gallon, S. L., Fedak, M. A. & Thompson, D. How long does a dive last? Foraging decisions by breath-hold divers in a patchy environment: A test of a simple model. Anim. Behav. 74, 207–218. https://doi.org/10.1016/j.anbehav.2006.06.022 (2007).

    Article  Google Scholar 

  • 94.

    Gutiérrez, M., Castillo, R., Segura, M., Peraltilla, S. & Flores, M. Trends in spatio-temporal distribution of Peruvian anchovy and other small pelagic fish biomass from 1966–2009. Latin Am. J. Aquat. Res. 40, 633–648. https://doi.org/10.3856/vol40-issue3-fulltext-12 (2012).

    Article  Google Scholar 

  • 95.

    Crocker, D., Costa, D. P., Le Boeuf, B. J., Webb, P. M. & Houser, D. S. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser. 309, 1–10. https://doi.org/10.3354/meps309001 (2006).

    ADS  Article  Google Scholar 

  • 96.

    Gillett, N. P., Kell, T. D. & Jones, P. D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027721 (2006).

    Article  Google Scholar 

  • 97.

    Costa, D. P. et al. Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. Integr. Comp. Biol. 50, 1018–1030. https://doi.org/10.1093/icb/icq054 (2010).

    Article  PubMed  Google Scholar 

  • 98.

    Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49. https://doi.org/10.1016/j.pocean.2016.12.011 (2017).

    ADS  Article  Google Scholar 

  • 99.

    Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Y. Impacts of climate change on Australian marine mammals. Aust. J. Zool. https://doi.org/10.1071/zo12131 (2013).

    Article  Google Scholar 

  • 100.

    Evans, P. G. & Bjørge, A. Impacts of climate change on marine mammals. MCCIP Sci. Rev. https://doi.org/10.14465/2013.arc15.134-148 (2013).

    Article  Google Scholar 

  • 101.

    Cansse, T., Fauchet, L., Wells, M. R. & Arnould, J. P. Y. Factors influencing prey capture success and profitability in Australasian gannets (Morus serrator). Biol. Open. https://doi.org/10.1242/bio.047514 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 102.

    Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979. https://doi.org/10.1007/s00442-015-3294-6 (2015).

    ADS  Article  PubMed  Google Scholar 

  • 103.

    Hindell, M. A. et al. Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories. Ecosphere 7, e01213 (2016).

    Article  Google Scholar 

  • 104.

    Gong, T., Feldstein, S. B. & Luo, D. The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci. 67, 2854–2870. https://doi.org/10.1175/2010jas3311.1 (2010).

    ADS  Article  Google Scholar 

  • 105.

    Luo, J. et al. Interaction between El Niño and extreme Indian Ocean Dipole. J. Clim. 23, 726–742. https://doi.org/10.1175/2009JCLI3104.1 (2010).

    ADS  Article  Google Scholar 

  • 106.

    Chambers, L. E. et al. Determining trends and environmental drivers from long-term marine mammal and seabird data: Examples from Southern Australia. Reg. Environ. Change 15, 197–209. https://doi.org/10.1007/s10113-014-0634-8 (2014).

    Article  Google Scholar 

  • 107.

    Goldsworthy, S. D. et al. Trophodynamics of the eastern Great Australian Bight ecosystem: Ecological change associated with the growth of Australia’s largest fishery. Ecol. Model. 255, 38–57. https://doi.org/10.1016/j.ecolmodel.2013.01.006 (2013).

    Article  Google Scholar 

  • 108.

    Watson, R. A. et al. Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecol. Model. 264, 115–129. https://doi.org/10.1016/j.ecolmodel.2012.05.008 (2013).

    Article  Google Scholar 

  • 109.

    Grose, M., Timbal, B., Wilson, L., Bathols, J. & Kent, D. The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Meteorol. Oceanogr. J. 65, 90–106 (2015).

    Article  Google Scholar 

  • 110.

    Pante, E. & Simon-Bouhet, B. marmap: A Package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 111.

    Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data. R package version 1.1-1. https://CRAN.R-project.org/package=oce (2019).

  • 112.

    Kelley, D. ocedata: Oceanographic Data Sets for ‘oce‘ Package. R package version 0.1.5. https://CRAN.R-project.org/package=ocedata (2018).

  • 113.

    Adobe Inc. Adobe Illustrator. https://adobe.com/products/illustrator. (2019).


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal