IPBES Summary for policy makers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production (eds Potts, S. G. et al.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany (2016).
Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, e37235. https://doi.org/10.1371/journal.pone.0037235 (2012).
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
Konuma, A. & Okubo, S. Valuating pollination services for agriculture in Japan. Jpn. J. Ecol. 65, 217–226 (2015) ((in Japanese)).
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bee’s responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).
Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).
Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387 (2009).
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 108, 662–667. https://doi.org/10.1073/pnas.1014743108 (2011).
IUCN Bumblebee Specialist Group Report 2014. https://www.xerces.org/wp-content/uploads/2015/03/2014-bbsg-annual-report.pdf (2015).
Nieto, A. et al. European Red List of bees (Publication Office of the European Union, Luxembourg, 2014).
Jacobson, M. M., Tucker, E. M., Mathiasson, M. E. & Rehan, S. M. Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biol. Cons. 217, 437–445 (2018).
Goulson, D., Hanley, M. E., Darvill, B. & Ellis, J. S. Biotope associations and the decline of bumblebees (Bombus spp.). J. Insect Conserv. 10, 95–103 (2006).
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect Conserv. 21, 357–366 (2017).
Mommaerts, V. et al. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207–215 (2010).
Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449 (2016).
Inoue, M. N., Yokoyama, J. & Washitani, I. Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv. 12, 135–146 (2008).
Cameron, S. A., Lim, H. C., Lozier, J. D., Duennes, M. A. & Thorp, R. Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113, 4386–4391 (2016).
Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T. & Kawata, M. Utilization of photographs taken by citizens for estimating bumblebee distributions. Sci. Rep. 7, 11215. https://doi.org/10.1038/s41598-017-10581-x (2017).
Silvertown, J. et al. Crowdsourcing the identification of organisms: A case-study of iSpot. Zookeys 480, 125–146 (2015).
Falk, S. et al. Evaluating the ability of citizen scientists to identify bumblebee (Bombus) species. PLoS ONE 14, e0218614. https://doi.org/10.1371/journal.pone.0218614 (2019).
Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17, 940–946 (2007).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Kinota, K., Takamizawa, K. & Ito, M. The Bumblebees of Japan (Hokkaido University Press, Sapporo, 2013) ((in Japanese)).
Woodard, S. H. Bumble bee ecophysiology: integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101–108 (2017).
Ogilvie, J. E. et al. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett. 20, 1507–1515 (2017).
Taki, H., Kevan, P. G. & Ascher, J. S. Landscape effects of forest loss in a pollination system. Landscape Ecol. 22, 1575–1587 (2007).
Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).
Klein, A.-M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).
Annual Report on Forest and Forestry in Japan (FY2018). Ministry of Agriculture, Forestry, and Fisheries. https://www.maff.go.jp/e/data/publish/attach/pdf/index-176.pdf (2018).
Maleque, M. A., Ishii, H. T., Maeto, K. & Taniguchi, S. Line thinning forests the abundance and diversity of understory Hymenoptera (Insecta) in Japanese cedar (Cryptomeria japonica D. Don) plantations. J. For. Res. 12, 14–23 (2007).
Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).
Katayama, E. Bumblebees (Hokkaido University Press, Sapporo, 2007) ((in Japanese)).
Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. J. Insect Conserv. 23, 45–62 (2019).
Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).
Japan Biodiversity Outlook 2 Nature Conservation Bureau, Ministry of the Environment. https://www.env.go.jp/nature/biodic/jbo2/pamph04.pdf (2016).
Ushimaru, A. et al. The effects of human management on spatial distribution of two bumble bee species in a traditional agro-forestry Satoyama landscape. J. Apic. Res. 47, 296–303 (2008).
Iwata, M. A wild bee survey in Setaura (Kumamoto Pref.), Kyushu, Japan (Hymenoptera, Apoidea). Jpn. J. Entomol. 65, 635–662 (1997) ((in Japanese)).
Ministry of the Environment. https://www.biodic.go.jp/biodiversity/activity/policy/map/map22/ (2016). (in Japanese).
Uchida, K., Takahashi, S., Shinohara, T. & Ushimaru, A. Threatened herbivorous insects maintained by long-term traditional management practices in semi-natural grasslands. Agric. Ecosyst. Environ. 221, 156–162 (2016).
Uchida, K., Hiraiwa, M. K. & Ushimaru, A. Plant and herbivorous insect diversity loss are greater than null model expectations due to land-use changes in agro-ecosystems. Biol. Cons. 201, 270–276 (2016).
Radeloff, V. C. et al. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. 22, 1036–1049 (2012).
Rasmont, P. et al. Climatic risk and distribution atlas of European bumblebees. Biorisk 10, 246 pp. (Pensoft, Sofia, 2015).
Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).
Sirois-Delisle, C. & Kerr, J. T. Climate change-driven range losses among bumblebee species are poised to accelerate. Sci. Rep. 8, 14464 (2018).
Pyke, G. H., Thomson, J. D., Inouye, D. W. & Miller, T. J. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7, e01267 (2016).
Seino, H. An estimation of distribution of meteorological elements using GIS and AMeDAS data. J. Agric. Meteorol. 48, 379–383 (1993) ((in Japanese)).
Young, N., Carter, L. & Evangelista, P. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). https://ibis.colostate.edu/WebContent/WS/ColoradoView/TutorialsDownloads/A_Maxent_Model_v7.pdf (2011).
Syfert, M. M., Smith, M. J. & Coomes, D. A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8, e55158. https://doi.org/10.1371/journal.pone.0055158 (2013).
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
Source: Ecology - nature.com