in

Evidence for signatures of ancient microbial life in paleosols

  • 1.

    Kehl, M. Quaternary Loesses, Loess-Like Sediments, Soils and Climate Change in Iran (Gebrüder Borntraeger Verlagsbuchhandlung, 2010).

  • 2.

    Kehl, M., Sarvati, R., Ahmadi, H., Frechen, M. & Skowronek, A. Loess paleosol-sequences along a climatic gradient in Northern Iran. Eiszeitalt. Ggw. 55, 149–173 (2005).

    Google Scholar 

  • 3.

    Bradley, R. S. Paleoclimatology: Reconstructing Climates of the Quaternary Vol. 68 (Academic Press, Cambridge, 1999).

    Google Scholar 

  • 4.

    Vlaminck, S. et al. Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia—Detailed insights from the loess profile Toshan (NE Iran). Quat. Sci. Rev. 180, 75–95 (2018).

    ADS  Article  Google Scholar 

  • 5.

    Schulz, S. et al. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10, 3983–3996 (2013).

    ADS  Article  Google Scholar 

  • 6.

    Tscherko, D., Rustemeier, J., Richter, A., Wanek, W. & Kandeler, E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696 (2003).

    Article  Google Scholar 

  • 7.

    Nemergut, D. R. et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb. Ecol. 53, 110–122 (2007).

    PubMed  Article  Google Scholar 

  • 8.

    Turner, S. et al. Microbial community dynamics in soil depth profiles over 120,000 years of ecosystem development. Front. Biol. 8, 1–17 (2017).

    Google Scholar 

  • 9.

    Chaopricha, N. T. & Marín-Spiotta, E. Soil burial contributes to deep soil organic carbon storage. Soil Biol. Biochem. 69, 251–264 (2014).

    CAS  Article  Google Scholar 

  • 10.

    Shahriari, A. et al. Biomarkers in modern and buried soils of semi-desert and forest ecosystems of northern Iran. Quat. Int. 429, 62–73 (2017).

    Article  Google Scholar 

  • 11.

    Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).

    Article  Google Scholar 

  • 12.

    Dulić, T. et al. Cyanobacterial diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. Quat. Int. 429, 74–85 (2017).

    Article  Google Scholar 

  • 13.

    Demkina, T. S., Khomutova, T. E., Kashirskaya, N. N., Stretovich, I. V. & Demkin, V. A. Characteristics of microbial communities in steppe paleosols buried under kurgans of the Sarmatian time (I-IV centuries AD). Eurasian Soil Sci. 42, 778–787 (2009).

    ADS  Article  Google Scholar 

  • 14.

    Khomutova, T. E. et al. An assessment of changes in properties of steppe kurgan paleosoils in relation to prevailing climates over recent millennia. Quat. Res. 67, 328–336 (2007).

    Article  Google Scholar 

  • 15.

    Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article  Google Scholar 

  • 16.

    Pedersen, M. W. et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B 370, 20130383 (2015).

    Article  CAS  Google Scholar 

  • 17.

    Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Coolen, M. J. L. et al. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 223, 225–239 (2004).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Belle, S. et al. Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J. Paleolimnol. 52, 215–228 (2014).

    ADS  Article  Google Scholar 

  • 21.

    Bellemain, E. et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Zhang, D. C., Brouchkov, A., Griva, G., Schinner, F. & Margesin, R. Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology (Basel) 2, 85–106 (2013).

    Google Scholar 

  • 23.

    Gilichinsky, D. et al. Bacteria in permafrost. In Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R. et al.) 83–102 (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-74335-4_6

    Google Scholar 

  • 24.

    Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr. Biol. 14, 13–14 (2004).

    Article  CAS  Google Scholar 

  • 25.

    Vlaminck, S. et al. Loess-soil sequence at Toshan (Northern Iran): insights into late Pleistocene climate change. Quat. Int. 399, 122–135 (2016).

    Article  Google Scholar 

  • 26.

    Lauer, T. et al. Luminescence-chronology of the loess palaeosol sequence Toshan, Northern Iran: a highly resolved climate archive for the last glacial-interglacial cycle. Quat. Int. 429, 3–12 (2017).

    Article  Google Scholar 

  • 27.

    Khormali, F. & Kehl, M. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quat. Int. 234, 109–123 (2011).

    Article  Google Scholar 

  • 28.

    Khormali, F., Ghergherechi, S., Kehl, M. & Ayoubi, S. Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran. Geoderma 179–180, 113–122 (2012).

    ADS  Article  CAS  Google Scholar 

  • 29.

    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).

    CAS  Article  Google Scholar 

  • 30.

    Eilers, K. G., Debenport, S., Anderson, S. & Fierer, N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 50, 58–65 (2012).

    CAS  Article  Google Scholar 

  • 31.

    Helgason, B. L., Konschuh, H. J., Bedard-Haughn, A. & VandenBygaart, A. J. Microbial distribution in an eroded landscape: Buried A horizons support abundant and unique communities. Agric. Ecosyst. Environ. 196, 94–102 (2014).

    Article  Google Scholar 

  • 32.

    Liu, G. et al. Vertical changes in bacterial community composition down to a depth of 20 m on the degraded Loess Plateau in China. Land Degrad. Dev. 31, 1300–1313.

    Article  Google Scholar 

  • 33.

    Lauer, T. et al. The Agh Band loess-palaeosol sequence—A terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran. Quat. Int. 439, 13–30 (2017).

    Article  Google Scholar 

  • 34.

    Mitzscherling, J. et al. Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosci. Discuss. 16, 3941–3958 (2019).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Vuillemin, A., Ariztegui, D., Leavitt, P. R. & Bunting, L. Recording of climate and diagenesis through sedimentary DNA and fossil pigments at Laguna Potrok Aike, Argentina. Biogeosciences 13, 2475–2492 (2016).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Ciobanu, M.-C. et al. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments. Biogeosciences 9, 3491–3512 (2012).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 38.

    Drancourt, M. & Raoult, D. Paleomicrobiology: Current issues and perspectives. Nat. Rev. Microbiol. 3, 23–35 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Stevenson, A. et al. Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ. Microbiol. 17, 257–277 (2015).

    PubMed  Article  Google Scholar 

  • 40.

    Schimel, J. P. Life in dry soils: Effects of drought on soil microbial ommunities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Article  Google Scholar 

  • 41.

    Lebre, P. H., De Maayer, P. & Cowan, D. A. Xerotolerant bacteria: Surviving through a dry spell. Nat. Rev. Microbiol. 15, 285–296 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Joergensen, R. G. & Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Aslam, S. N. et al. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota. Environ. Microbiol. 18, 5048–5062 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Armstrong, A. et al. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci. Rep. 6, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 45.

    Knief, C. et al. Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert. Glob. Planet. Change 184, 103078 (2020).

    Article  Google Scholar 

  • 46.

    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 1–16 (2016).

    Google Scholar 

  • 47.

    Chernov, T. I. et al. Comparative analysis of the structure of buried and surface soils by analysis of microbial DNA. Microbiology 87, 833–841 (2018).

    CAS  Article  Google Scholar 

  • 48.

    Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob. Biogeochem. Cycles 20, GB3026 (2006).

    ADS  Article  CAS  Google Scholar 

  • 50.

    Baldani, J. I. et al. The family Oxalobacteraceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 919–974 (Springer, Berlin, 2014).

    Google Scholar 

  • 51.

    Li, J. et al. Phytomonospora endophytica gen. nov., sp. nov., isolated from the roots of Artemisia annua L. Int. J. Syst. Evol. Microbiol. 61, 2967–2973 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Eyice, Ö et al. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 9, 2336–2348 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Liu, D., Yang, Y., An, S., Wang, H. & Wang, Y. The biogeographical distribution of soil bacterial communities in the Loess Plateau as revealed by high-throughput sequencing. Front. Microbiol. 9, 2456 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Trujillo, M. E. et al. Pseudonocardia nigra sp. nov., isolated from Atacama desert rock. Int. J. Syst. Evol. Microbiol. 67, 2980–2985 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Mohammadipanah, F. & Wink, J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 6, 1541 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Goodfellow, M., Nouioui, I., Sanderson, R., Xie, F. & Bull, A. T. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 111, 1315–1332 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Bull, A. T. et al. High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 22, 47–57 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Polymenakou, P. N., Mandalakis, M., Stephanou, E. G. & Tselepides, A. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect. 116, 292–296 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Wang, X. et al. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quat. Int. 429, 41–51 (2017).

    Article  Google Scholar 

  • 60.

    Spring, S., Kämpfer, P. & Schleifer, K. H. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 51, 1463–1470 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Makhdoumi, A. Bacterial diversity in south coast of Caspian Sea: culture-dependent and culture-independent survey. Casp. J. Environ. Sci. 16, 259–269 (2018).

    Google Scholar 

  • 62.

    Lindh, M. V. et al. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities. Front. Microbiol. 6, 1–18 (2015).

    Article  Google Scholar 

  • 63.

    Shifteh Some’e, B., Ezani, A. & Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res. 113, 1–12 (2012).

    Article  Google Scholar 

  • 64.

    Mansouri Daneshvar, M. R., Ebrahimi, M. & Nejadsoleymani, H. An overview of climate change in Iran: facts and statistics. Environ. Syst. Res. 8, 7 (2019).

    Article  Google Scholar 

  • 65.

    Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Takai, K. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Edgar, R. C. & Flyvbjerg, H. Sequence analysis error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Maarastawi, S. A., Frindte, K., Linnartz, M. & Knief, C. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays. Front. Microbiol. 9, 1295 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    R Core Team. R: A language and environment for statistical computing version 3.2.5. Vienna: R Foundation for Statistical Computing. (2016).

  • 71.

    Oksanen, J. et al. Vegan: community ecology package. R package version 2.0-10 (2013).


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization