in

Evolution of diversity explains the impact of pre-adaptation of a focal species on the structure of a natural microbial community

[adace-ad id="91168"]
  • 1.

    Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA. Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett. 2005;8:1114–27.

    Google Scholar 

  • 2.

    Ellner SP, Geber MA, Hairston NG Jr. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett. 2011;14:603–14.

    PubMed  Google Scholar 

  • 3.

    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Buckling A, Craig Maclean R, Brockhurst MA, Colegrave N. The beagle in a bottle. Nature. 2009;457:824–9.

    CAS  PubMed  Google Scholar 

  • 5.

    Gómez P, Buckling A. Real-time microbial adaptive diversification in soil. Ecol Lett. 2013;16:650–5.

    PubMed  Google Scholar 

  • 6.

    Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Lankau RA. Rapid evolutionary change and the coexistence of species. Annu Rev Ecol Evol Syst. 2011;42:335–54.

    Google Scholar 

  • 8.

    Pantel JH, Duvivier C, Meester LD. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol Lett. 2015;18:992–1000.

    PubMed  Google Scholar 

  • 9.

    Hart SP, Turcotte MM, Levine JM. Effects of rapid evolution on species coexistence. Proc Natl Acad Sci. 2019;116:2112–7.

    CAS  PubMed  Google Scholar 

  • 10.

    Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69.

    CAS  PubMed  Google Scholar 

  • 11.

    Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M. Ecological consequences of genetic diversity. Ecol Lett. 2008;11:609–23.

    PubMed  Google Scholar 

  • 12.

    Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, et al. Why intraspecific trait variation matters in community ecology. Trends Ecol evolution. 2011;26:183–92.

    Google Scholar 

  • 13.

    Violle C, Enquist BJ, McGill BJ, Jiang LIN, Albert CH, Hulshof C, et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol. 2012;27:244–52.

    PubMed  Google Scholar 

  • 14.

    Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc B Biol Sci. 2010;277:1789–97.

    Google Scholar 

  • 15.

    Bailey SF, Dettman JR, Rainey PB, Kassen R. Competition both drives and impedes diversification in a model adaptive radiation. Proc R Soc B Biol Sci. 2013;280:20131253.

    Google Scholar 

  • 16.

    Jousset A, Eisenhauer N, Merker M, Mouquet N, Scheu S. High functional diversity stimulates diversification in experimental microbial communities. Sci Adv. 2016;2:e1600124.

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Schluter D. Experimental evidence that competition promotes divergence in adaptive radiation. Science. 1994;266:798–801.

    CAS  PubMed  Google Scholar 

  • 18.

    Ellis CN, Traverse CC, Mayo-Smith L, Buskirk SW, Cooper VS. Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution. 2015;69:283–93.

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Zee PC, Fukami T. Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc R Soc B Biol Sci. 2018;285:20171722.

    Google Scholar 

  • 20.

    Schluter D. Ecological character displacement in adaptive radiation. Am Nat. 2000;156:S4–S16.

    Google Scholar 

  • 21.

    Urban MC, De Meester L. Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc R Soc B Biol Sci. 2009;276:4129–38.

    Google Scholar 

  • 22.

    De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC. Evolving perspectives on monopolization and priority effects. Trends Ecol Evol. 2016;31:136–46.

    PubMed  Google Scholar 

  • 23.

    Luján AM, Gómez P, Buckling A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett. 2015;11:20140934.

    PubMed  PubMed Central  Google Scholar 

  • 24.

    O’Brien S, Hesse E, Luján A, Hodgson DJ, Gardner A, Buckling A. No effect of intraspecific relatedness on public goods cooperation in a complex community. Evolution. 2018;72:1165–73.

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

    Google Scholar 

  • 26.

    Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997 2013.

  • 27.

    Garrison E, Marth G Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907 2012.

  • 28.

    Garrison E Vcflib: A C++ library for parsing and manipulating VCF files. GitHub https://www.githubcom/ekg/vcflib 2012.

  • 29.

    Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 2016;5:1492.

  • 30.

    Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, et al. The RDP (ribosomal database project) continues. Nucleic Acids Res. 2000;28:173–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2010;27:592–3.

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Hall AR, Colegrave N. How does resource supply affect evolutionary diversification? Proc R Soc B Biol Sci. 2006;274:73–78.

    Google Scholar 

  • 33.

    Venail PA, MacLean RC, Bouvier T, Brockhurst MA, Hochberg ME, Mouquet N. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature. 2008;452:210.

    CAS  PubMed  Google Scholar 

  • 34.

    Robertson A. Experimental design on the measurement of heritabilities and genetic correlations: biometrical genetics. Biometrics. 1959;15:219–26.

    Google Scholar 

  • 35.

    Barrett RD, MacLean RC, Bell G. Experimental evolution of pseudomonas fluorescens in simple and complex environments. Am Naturalist. 2005;166:470–80.

    Google Scholar 

  • 36.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  • 37.

    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169–72.

    PubMed  Google Scholar 

  • 38.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.

    Google Scholar 

  • 40.

    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.

    CAS  PubMed  Google Scholar 

  • 41.

    Cailliez F. The analytical solution of the additive constant problem. Psychometrika. 1983;48:305–8.

    Google Scholar 

  • 42.

    Love M, Anders S, Huber W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014;15:10–1186.

    Google Scholar 

  • 43.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS computational Biol. 2014;10:e1003531.

    Google Scholar 

  • 44.

    Jombart T, Balloux F, Dray S. Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics. 2010;26:1907–9.

    CAS  PubMed  Google Scholar 

  • 45.

    Lenth R Emmeans: Estimated marginal means, aka least-squares means. R Package Version 2018; 1.

  • 46.

    R Core Team. R: A language and environment for statistical computing. 2013.

  • 47.

    Wickham H ggplot2: elegant graphics for data analysis. 2016. Springer.

  • 48.

    Vellend M. The consequences of genetic diversity in competitive communities. Ecology. 2006;87:304–11.

    PubMed  Google Scholar 

  • 49.

    Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 2008;320:1081–5.

    CAS  PubMed  Google Scholar 

  • 50.

    Narwani A, Alexandrou MA, Herrin J, Vouaux A, Zhou C, Oakley TH, et al. Common ancestry is a poor predictor of competitive traits in freshwater green algae. PLoS ONE. 2015;10:e0137085.

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Buckling A, Kassen R, Bell G, Rainey PB. Disturbance and diversity in experimental microcosms. Nature. 2000;408:961.

    CAS  PubMed  Google Scholar 

  • 52.

    Castledine M, Buckling A, Padfield D. A shared coevolutionary history does not alter the outcome of coalescence in experimental populations of Pseudomonas fluorescens. J Evol Biol. 2019;32:58–65.

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Lessons from the Clean Air Car Race 50 years later

    “The Emerald Tutu” wins NSF grant for design to protect Boston’s coastline