in

Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau

[adace-ad id="91168"]
  • 1.

    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science321, 1054–1058 (2008).

    CAS  PubMed  Google Scholar 

  • 2.

    Wang, C. et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics621, 1–43 (2014).

    Google Scholar 

  • 3.

    Yin, A. Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics488, 293–325 (2010).

    Google Scholar 

  • 4.

    An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature411, 62–66 (2001).

    CAS  Google Scholar 

  • 5.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science339, 74–78 (2013).

    CAS  PubMed  Google Scholar 

  • 6.

    Kreft, H. & Jetz, W. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr.37, 2029–2053 (2010).

    Google Scholar 

  • 7.

    Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev.90, 236–253 (2015).

    PubMed  Google Scholar 

  • 8.

    Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol.1, 89 (2017).

    PubMed  Google Scholar 

  • 9.

    He, J., Kreft, H., Lin, S., Xu, Y. & Jiang, H. Cenozoic evolution of beta diversity and a Pleistocene emergence for modern mammal faunas in China. Glob. Ecol. Biogeogr.27, 1326–1338 (2018).

    Google Scholar 

  • 10.

    Zhang, P. et al. Phylogeny, evolution, and biogeography of Asiatic Salamanders (Hynobiidae). Proc. Natl Acad. Sci. USA103, 7360–7365 (2006).

    CAS  PubMed  Google Scholar 

  • 11.

    Che, J. et al. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc. Natl Acad. Sci. USA107, 13765–13770 (2010).

    CAS  PubMed  Google Scholar 

  • 12.

    Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature394, 364–367 (1998).

    CAS  Google Scholar 

  • 13.

    Pisano, J. et al. Out of Himalaya: the impact of past Asian environmental changes on the evolutionary and biogeographical history of Dipodoidea (Rodentia). J. Biogeogr.42, 856–870 (2015).

    Google Scholar 

  • 14.

    Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M. & Mulch, A. Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. in Mountains, Climate and Biodiversity (eds Hoorn, C., Perrigo, A. & Antonelli, A.) 429–448 (Wiley-Blackwell, 2018).

  • 15.

    Li, J. et al. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proc. Natl Acad. Sci. USA110, 3441–3446 (2013).

    CAS  PubMed  Google Scholar 

  • 16.

    Klaus, S., Morley, R. J., Plath, M., Zhang, Y. P. & Li, J. T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun.7, 12132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Jiang, D., Klaus, S., Zhang, Y. P., Hillis, D. M. & Li, J. T. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl Sci. Rev.6, 739–745 (2019).

    Google Scholar 

  • 18.

    Deng, T. et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores. Science333, 1285–1288 (2011).

    CAS  PubMed  Google Scholar 

  • 19.

    Mazel, F. et al. Global patterns of β-diversity along the phylogenetic time-scale: the role of climate and plate tectonics. Glob. Ecol. Biogeogr.26, 1211–1221 (2017).

    Google Scholar 

  • 20.

    Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl Acad. Sci. USA115, 6034–6039 (2018).

    CAS  PubMed  Google Scholar 

  • 21.

    Daru, B. H., Elliott, T. L., Park, D. S. & Davies, T. J. Understanding the processes underpinning patterns of phylogenetic regionalization. Trends Ecol. Evol.32, 845–860 (2017).

    PubMed  Google Scholar 

  • 22.

    Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C. & Palacio, R. D. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc. Natl Acad. Sci. USA115, 7985–7990 (2018).

    CAS  PubMed  Google Scholar 

  • 23.

    Daru, B. H., van der Bank, M. & Davies, T. J. Unravelling the evolutionary origins of biogeographic assemblages. Divers. Distrib.24, 313–324 (2018).

    Google Scholar 

  • 24.

    Cowman, P. F., Parravicini, V., Kulbicki, M. & Floeter, S. R. The biogeography of tropical reef fishes: endemism and provinciality through time. Biol. Rev.92, 2112–2130 (2017).

    PubMed  Google Scholar 

  • 25.

    Graham, R. W. et al. Spatial response of mammals to late quaternary environmental fluctuations. Science272, 1601–1606 (1996).

    CAS  PubMed  Google Scholar 

  • 26.

    Hopkins, M. J., Bapst, D. W., Simpson, C. & Warnock, R. C. The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records. Paleobiology44, 561–574 (2018).

    Google Scholar 

  • 27.

    Silvestro, D. et al. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data. Philos. Trans. R. Soc. B371, 20150225 (2016).

    Google Scholar 

  • 28.

    Dornburg, A., Moore, J., Beaulieu, J. M., Eytan, R. I. & Near, T. J. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution69, 146–161 (2015).

    PubMed  Google Scholar 

  • 29.

    Siqueira, A. C., Bellwood, D. R., Cowman, P. F. & Gaither, M. Historical biogeography of herbivorous coral reef fishes: the formation of an Atlantic fauna. J. Biogeogr.46, 1611–1624 (2019).

    Google Scholar 

  • 30.

    Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Evol. S33, 561–588 (2002).

    Google Scholar 

  • 31.

    Tomašových, A. & Kidwell, S. M. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology35, 94–118 (2009).

    Google Scholar 

  • 32.

    Crisp, M. D. & Cook, L. G. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. S44, 303–324 (2013).

    Google Scholar 

  • 33.

    Bacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl Acad. Sci. USA112, 6110–6115 (2015).

    CAS  PubMed  Google Scholar 

  • 34.

    White, A. E., Dey, K. K., Mohan, D., Stephens, M. & Price, T. D. Regional influences on community structure across the tropical-temperate divide. Nat. Commun.10, 2646 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Kreft, H. & Jetz, W. Comment on “An update of Wallace’s zoogeographic regions of the world”. Science341, 343 (2013).

    CAS  PubMed  Google Scholar 

  • 36.

    Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev.88, 145–166 (2008).

    Google Scholar 

  • 37.

    Renner, S. S. Multiple Miocene Melastomataceae dispersal between Madagascar, Africa and India. Philos. Trans. R. Soc. B359, 1485–1494 (2004).

    Google Scholar 

  • 38.

    Kamei, R. G. et al. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc. R. Soc. B: Biol. Sci.279, 2396–2401 (2012).

    Google Scholar 

  • 39.

    Wu, F., Miao, D., Chang, M. M., Shi, G. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep.7, 878 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Deng, T. & Ding, L. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. Natl Sci. Rev.2, 417–437 (2015).

    CAS  Google Scholar 

  • 41.

    Li, Q. & Wang, X. Into Tibet: an early Pliocene dispersal of fossil zokor (Rodentia: Spalacidae) from Mongolian Plateau to the hinterland of Tibetan Plateau. PLoS ONE10, e0144993 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Li, Q., Stidham, T. A., Ni, X. & Li, L. Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal ‘into Tibet’. J. Vertebr. Paleontol.37, e1403443 (2018).

    Google Scholar 

  • 43.

    Mulch, A. & Chamberlain, C. P. The rise and growth of Tibet. Nature439, 670–671 (2006).

    CAS  PubMed  Google Scholar 

  • 44.

    Su, T. et al. Uplift, climate and biotic changes at the Eocene-Oligocene transition in Southeast Tibet. Natl Sci. Rev.6, 495–504 (2018).

    Google Scholar 

  • 45.

    Guo, Z. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature416, 159–163 (2002).

    CAS  PubMed  Google Scholar 

  • 46.

    Sun, J. et al. Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology38, 515–518 (2010).

    CAS  Google Scholar 

  • 47.

    Miao, Y., Herrmann, M., Wu, F., Yan, X. & Yang, S. What controlled Mid–Late Miocene long-term aridification in Central Asia? — Global cooling or Tibetan Plateau uplift: a review. Earth-Sci. Rev.112, 155–172 (2012).

    Google Scholar 

  • 48.

    Wu, S. D. et al. Evolution of Asian interior arid-zone biota: evidence from the diversification of Asian Zygophyllum (Zygophyllaceae). PLoS ONE10, e0138697 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Qiu, Z. & Li, C. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau. Sci. China Ser. D.48, 1246–1258 (2005).

    Google Scholar 

  • 50.

    Sun, X. & Wang, P. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr. Palaeocl.222, 181–222 (2005).

    Google Scholar 

  • 51.

    Li, Y. et al. Mammalian evolution in Asia linked to climate changes. in Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-arid Environment Evolution (ed. An, Z.) 435–490 (Springer, 2014).

  • 52.

    Scotese, C. R. & Wright, N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic. (2018). Retrieved from https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/. (accessed in June 22, 2019).

  • 53.

    Lanier, H. C. & Olson, L. E. Inferring divergence times within pikas (Ochotona spp.) using mtDNA and relaxed molecular dating techniques. Mol. Phylogenetics Evol.53, 1–12 (2009).

    CAS  Google Scholar 

  • 54.

    Chan, Y. C. et al. Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS ONE5, e14419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Mercer, J. M. & Roth, V. L. The effects of Cenozoic global change on squirrel phylogeny. Science299, 1568–1572 (2003).

    CAS  PubMed  Google Scholar 

  • 56.

    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA114, 3444–3451 (2017).

    Google Scholar 

  • 57.

    He, D. & Chen, Y. Molecular phylogeny and biogeography of the highly specialized grade schizothoracine fishes (Teleostei: Cyprinidae) inferred from cytochrome b sequences. Chin. Sci. Bull.52, 777–788 (2007).

    CAS  Google Scholar 

  • 58.

    Lei, F., Qu, Y. & Song, G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool.60, 149–161 (2014).

    Google Scholar 

  • 59.

    Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. & Sandel, B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. S46, 551–572 (2015).

    Google Scholar 

  • 60.

    He, J., Kreft, H., Gao, E., Wang, Z. & Jiang, H. Patterns and drivers of zoogeographical regions of terrestrial vertebrates in China. J. Biogeogr.44, 1172–1184 (2017).

    Google Scholar 

  • 61.

    Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol.2, 459–464 (2018).

    PubMed  Google Scholar 

  • 62.

    Saladin, B. et al. Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nat. Commun.10, 249 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Marshall, C. R. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol.1, 165 (2017).

    PubMed  Google Scholar 

  • 64.

    Hunt, G. & Slater, G. Integrating paleontological and phylogenetic approaches to macroevolution. Annu. Rev. Ecol. Evol. S47, 189–213 (2016).

    Google Scholar 

  • 65.

    Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr.5, 242–248 (2013).

    Google Scholar 

  • 66.

    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol.1, 1677–1682 (2017).

    PubMed  Google Scholar 

  • 67.

    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol.17, e3000494 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol.24, 919–930 (2014).

    CAS  PubMed  Google Scholar 

  • 69.

    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv.204, 23–31 (2016).

    Google Scholar 

  • 70.

    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol.2, 850–858 (2018).

    PubMed  Google Scholar 

  • 71.

    Schliep, K. phangorn: phylogenetic analysis in R. Bioinformatics27, 592–593 (2011).

    CAS  PubMed  Google Scholar 

  • 72.

    R Core Team. R: a language and environment for statistical computing. https://www.Rproject.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 73.

    Blois, J. L. & Hadly, E. A. Mammalian response to Cenozoic climatic change. Annu. Rev. Earth Planet. Sci.37, 181–208 (2009).

    CAS  Google Scholar 

  • 74.

    Kocsis, Á. T. & Raja, N. B. chronosphere: earth system history variables. https://doi.org/10.1111/2041-210X.13161 (2019).

  • 75.

    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol.3, 808–812 (2012).

    Google Scholar 

  • 76.

    Dapporto, L. et al. recluster: an unbiased clustering procedure for beta‐diversity turnover. Ecography36, 1070–1075 (2013).

    Google Scholar 

  • 77.

    Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).

  • 78.

    He, J., Lin, S., Li, J., Yu, J. & Jiang, H. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau, Dryad, Dataset, https://doi.org/10.5061/dryad.5x69p8d10 (2020).


  • Source: Ecology - nature.com

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia