Reaka-Kudla, M. L. Known and Unknown Biodiversity, Risk of Extinction and Conservation Strategy in the Sea. In Waters in Peril 19–33 (Springer US, 2001).
Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS One 13 (2018).
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
The IUCN Red List of Threatened Species. Version 2018-2, http://www.iucnredlist.org (2018).
Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 201704949 (2017).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345 (2014).
Pievani, T. The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rend. Lincei 25, 85–93 (2014).
Wake, D. B. & Vredenburg, V. T. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 11466–73 (2008).
Tchernov, D., Mass, T. & Gruber, D. F. Symbiotic transition of algae-coral triggered by paleoclimatic events? Trends Ecol. Evol. 27, 194–5 (2012).
Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evolutionary Biology 11, (2011).
Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).
Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the cenozoic. Bull. Geol. Soc. Am. 116, 760–768 (2004).
Galeotti, S., Brinkhuis, H. & Huber, M. Records of post–Cretaceous-Tertiary boundary millennial-scale cooling from the western Tethys: A smoking gun for the impact-winter hypothesis? Geology 32, 529 (2004).
D’Hondt, S., Pilson, M. E. Q., Sigurdsson, H., Hanson, A. K. & Carey, S. Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22, 983–986 (1994).
Nenes, A. et al. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmos. Chem. Phys. 11, 6265–6272 (2011).
Coccioni, R. & Galeotti, S. K-T boundary extinction: Geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera. Geology 22, 779 (1994).
Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc. Natl. Acad. Sci. USA 111, 7537–41 (2014).
Joshi, M. et al. Global warming and ocean stratification: A potential result of large extraterrestrial impacts. Geophys. Res. Lett. 44, 3841–3848 (2017).
Wood, R. Reef Evolution. (Oxford Univ. Press, 1999).
Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
Snyder, C. W. Revised estimates of paleoclimate sensitivity over the past 800,000 years. Clim. Change 156, 121–138 (2019).
Mostofa, K. M. G. et al. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences Discussions (2015).
Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science. 301 (2003).
Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).
International Union for Conservation of Nature, IUCN Species Survival Commission. IUCN Red List Categories and Criteria: Version 3.1. (2001).
Kiessling, W. & Baron-Szabo, R. C. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 195–223 (2004).
Bay, L. K., Doyle, J., Logan, M. & Berkelmans, R. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R. Soc. Open Sci. 3, 160322 (2016).
Goulet, T. L. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 321, 1–7 (2006).
Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
Swain, T. D. et al. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching. Glob. Chang. Biol. 22, 2475–88 (2016).
Swain, T. D. et al. Relating coral skeletal structures at different length scales to growth, light availability to Symbiodinium, and thermal bleaching. Front. Mar. Sci. 5, (2018).
Swain, T. D. et al. Physiological integration of coral colonies is correlated with bleaching resistance. Mar. Ecol. Prog. Ser. 586, 1–10 (2018).
Warwick, R. M. & Clarke, K. R. Comparing the severity of disturbance; a meta-analysis of marine macrobenthic community data. Mar. Ecol. Prog. Ser. (1993).
Rosen, B. R. Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K±T boundary. In Biotic Response to Global Change: The Last 145 Million Years (ed. Culver, Stephen J, P. F. R.) 164–180 (Cambridge University Press, 2000).
Kiessling, W. & Kocsis, Á. T. Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41, 402–414 (2015).
Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS One 9, e107525 (2014).
Pandolfi, J. M. & Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 7, 52–58 (2014).
van Woesik, R. et al. Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc. R. Soc. London B Biol. Sci. (2012).
Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).
Stanley, G. D. & van de Schootbrugge, B. The Evolution of the Coral–Algal Symbiosis. In 7–19 (Springer Berlin Heidelberg, 2009).
Jablonski, D. Extinction and the spatial dynamics of biodiversity. Proc. Natl. Acad. Sci. USA 105, 11528–11535 (2008).
Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, (2005).
Barbeitos, M. S., Romano, S. L. & Lasker, H. R. Repeated loss of coloniality and symbiosis in scleractinian corals. Proc. Natl. Acad. Sci. 107, 11877–11882 (2010).
Edinger, E. N. & Risk, M. J. Oligocene-Miocene extinction and geographic restriction of Caribbean corals: Roles of turbidity, temperature, and nutrients. Palaios 9, 576 (1994).
Kaiho, K. A low extinction rate of intermediate-water benthic foraminifera at the Cretaceous/Tertiary boundary. Mar. Micropaleontol. 18, 229–259 (1992).
Stanley, G. D. Photosymbiosis and the evolution of modern coral reefs. Science 312, 857–858 (2006).
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).
Lough, J. M. & Cantin, N. E. Perspectives on massive coral growth rates in a changing ocean. Biol. Bull. 226, 187–202 (2014).
Randall, C. J., Jordan-Garza, A. G., Muller, E. M. & van Woesik, R. Relationships between the history of thermal stress and the relative risk of diseases of Caribbean corals. Ecology 95, 1981–1994 (2014).
Stanley, G. D. J. & Lipps, J. H. Photosymbiosis: The driving force for reef success and failure. Corals Reef Cris. Collapse Chang. The Paleon, 33–60 (2011).
Fautin, D. G. & Buddemeier, R. W. Adaptive bleaching: a general phenomenon. In Coelenterate Biology 2003 459–467 (Springer Netherlands, 2004).
Johnson, K. G., Budd, A. F. & Stemann, T. A. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21, 52–73 (1995).
Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauley, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353 (2016).
Harries, P. J. & Knorr, P. O. What does the ‘Lilliput Effect’ mean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).
Buffetaut, E. Continental Vertebrate Extinctions at the Triassic-Jurassic and Cretaceous-Tertiary Boundaries: a Comparison. In Biological Processes Associated with Impact Events 245–256 (Springer-Verlag, 2006).
Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946 (2017).
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (2001).
Hönisch, B. et al. The geological record of ocean acidification. Science 335 (2012).
Source: Ecology - nature.com