Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).
Hershkovitz, P. A geographic classification of Neotropical mammals. Chicago natural history museum. Fieldiana Zool. 36, 581–620 (1958).
Feeley, K. J. & Stroud, J. T. Where on Earth are the “tropics”?. Front. Biogeogr. 10(2), e38649. https://doi.org/10.21425/F5101-238649 (2018).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11), 933–938 (2011).
Udvardy, M.D.F. A classification of the biogeographical provinces of the world. IUCN Occasional Papers n° 18 (1975).
Canale, G. R., Peres, C. A., Guidorizzi, C. E., Gatto, C. A. F. & Kierulff, M. C. M. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7, e41671 (2012).
Antunes, A. P. et al. Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci. Adv. 2, e1600936 (2016).
Galetti, M. et al. Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant. Anim. Conserv. https://doi.org/10.1111/acv.12311 (2016).
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113(4), 892–897 (2016).
Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368 (2020).
Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. 117(13), 7095–7102 (2020).
Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20(4), 1251–1261 (2006).
Ceddia, M. G. et al. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl. Acad. Sci. 111(2), 7242–7247 (2014).
Pastro, L. A., Dickman, C. R. & Letnic, M. Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Glob. Ecol. Biogeogr. 23, 1146–1156 (2014).
Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).
Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Nat. Conserv. 14, e1–e16 (2016).
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, Causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
Redford, K. H. The empty forest. Bioscience 42, 412–422 (1992).
Terborgh, J. The big things that run the world: a sequel to E.O. Wilson. Conserv. Biol. 2(4), 402–403 (1988).
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
Levi, T. & Peres, C. A. Dispersal vaccum in the seedling recruitment of a primate-dispersed Amazonian tree. Biol. Conserv. 163, 99–106 (2013).
Bogoni, J. A., da Silva, P. G. & Peres, C. A. Co-declining mammal–dung beetle faunas throughout the Atlantic Forest biome of South America. Ecography 42, 1803–1818 (2019).
Lacher, T. E. et al. The functional roles of mammals in ecosystems. J. Mammal. 100(3), 942–964 (2019).
Kaufman, D. M. Diversity of new world mammals: universality of the latitudinal gradients of species and bauplans. J. Mammal. 76(2), 322–334 (1995).
Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103(51), 19374–19379 (2006).
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096 (2017).
Lima, F. et al. ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98(11), 2979 (2017).
Souza, Y. et al. ATLANTIC MAMMALS: a data set of assemblages of medium- and large-sized mammals of the Atlantic Forest of South America. Ecology 100(10), e02785 (2019).
Janzen, D. H. (ed.) Costa Rican Natural History (The University of Chicago Press, Chicago, 1983).
Gentry, A. H. (ed.) Four Neotropical Rainforest (Yale University Press, London, 1993).
Nadkarni, N.M. & Wheelwright, N.T. (eds.). Monteverde: Ecology and Conservation of a Tropical Cloud Forest—2014 Updated Chapters. Bowdoin Scholars Bookshelf (2014).
Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).
IUCN Spatial data download: mammals. https://www.iucnredlist.org/technicaldocuments/spatial-data#mammals. Accessed 11 June 2018. (2016).
Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos Trans. R. Soc. Lond. B Biol. Sci. 366, 2633–2641 (2011).
González-Maya, J. F., Martínez-Meyer, E., Medellín, R. & Ceballos, G. Distribution of mammal functional diversity in the Neotropical realm: influence of land-use and exticton risk. PLoS ONE 12(4), e0175931 (2017).
Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 2017, 1–12. https://doi.org/10.1111/geb.12601 (2017).
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9), 2648 (2009).
Wilman, H. et al. Elton traits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95(7), 2027–2027 (2014).
Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN), Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2005). https://doi.org/10.7927/H4M61H5F.
Kobayashi, T. et al. Production of global land cover data—GLCNMO2013. J. Geogr. Geol. 9(3), 1–15 (2017).
NASA Earth Observatory. Maps created by Jesse Allen and Reto Stockli, NASA Earth Observatory, using data courtesy the MODIS Land Science Team at NASA Goddard Space Flight Center (2020). https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD14A1_M_FIRE&year=2018.
Bogoni, J. A. et al. What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity?. Biol. Conserv. 211, 85–94 (2017).
Morrone, J. J. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782(1), 1–110 (2014).
Google Earth. KML gallery: explore the earth on Google (2020). https://earth.google.com/gallery/index.html.
Bayes, T. An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1764).
Cressie, N. A. C. Statistics for Spatial Data Revised. (Wiley, Hoboken, 1993).
Rabinowitz, D. Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (Wiley, Hoboken, 1981).
Yu, J. & Dobson, F. S. Seven forms of rarity in mammals. J. Biogeogr. 27, 131–139 (2000).
Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
Bogoni, J. A., Pires, J. S. R., Graipel, M. E., Peroni, N. & Peres, C. A. Wish you were here: how defaunated is the Atlantic Forest biome of its medium- to large bodied mammal fauna?. PLoS ONE 13(9), e0204515 (2018).
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 (2008).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).
Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950).
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).
Kamata, A. & Bauer, D. J. A note on the relation between factor analytic and item response theory models. Struct. Equ. Model. 15(1), 136–153 (2008).
Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).
Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Soft. 48(2), 1–36 (2012).
Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
Wen, Z. et al. Using completeness and defaunation indices to understand nature reserve’s key attributes in preserving medium- and large-bodied mammals. Biol. Conserv. 241, 108273 (2020).
Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martinez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understorey diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 282, 2580 (2015).
Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
Dean, W. With Broadax and Firebrand: The Destruction of the Brazilian Atlantic Forest (University of California Press, Berkeley, 1996).
Galetti, M. et al. Priority areas for the conservation of Atlantic forest large mammals. Biol. Conserv. 142(6), 1229–1241 (2009).
Leal, I. R., Silva, J. M. C., Tabarelli, M. & Lacher, T. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 19(3), 701–706 (2005).
Chesser, T. & Hackett, S. J. Mammalian diversity in South America. Science 256, 1502–1504 (1992).
Ojeda, R. A. Diversity and Conservation of Neotropical Mammals. Encyclopedia of Biodiversity 2nd edn. (Academic Press, Waltham, 2013).
Hansen, M. C. et al. High resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Lapola, D. M. et al. Pervasive transition of the Brazilian land-use system. Nat. Clim. Change 4, 27–35 (2014).
Ceddia, M. G. The super-rich and cropland expansion via direct investments in agriculture. Nat. Sustain. 3(4), 312–318 (2020).
Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).
Joppa, L. N., Loarle, S. R. & Pimm, S. L. On the protection of ‘“protected areas”’. Proc. Natl. Acad. Sci. 105(18), 6673–6678 (2008).
Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).
Oliveira, U. et al. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 9141 (2017).
Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
Begotti, R.A. & Peres, C.A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy (2020) (in press).
Levi, T., Shepard, G. H., Ohl-Schacherer, J. & Peres, C. A. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46, 804–814 (2009).
Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17(5), e3000247 (2019).
Sanderson, E. S. et al. The human footprint and the last of the wild. Bioscience 52(10), 891–904 (2002).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Belote, R. T. et al. Mammal species composition reveals new insights into Earth’s remaining wilderness. Front. Ecol. Environ. https://doi.org/10.1002/fee.2192 (2020).
Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).
Phillips, H. R. P., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270 (2017).
Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14(4), e0215152 (2019).
Magioli, M. M. et al. Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. 116(37), 18466–18472 (2019).
Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787 (2008).
Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian Forests with implications for REDD. Science 328, 1275–1278 (2010).
Martin, P. S. Discovery of America. Science 179, 969–974 (1973).
Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals (Yale University Press, New Haven, 1980).
Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1986).
Brown, J. H. & Sibly, R. M. Life-history evolution under a production constraint. Proc. Natl. Acad. Sci. 103(47), 17595–17599 (2006).
Hone, D. W. & Benton, M. J. The evolution of large size: how does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).
Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
Cardillo, M. et al. The predictability of extinction- biological and external correlates of decline in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).
Beca, G. et al. High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 210, 352–359 (2017).
Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. 114(29), 7635–7640 (2017).
Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).
Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. 113(4), 856–861 (2016).
Rees, J. D., Kingsford, R. T. & Letnic, M. In the absence of an apex predator, irruptive herbivores suppress grass seed production: implications for small granivores. Biol. Conserv. 213, 13–18 (2017).
Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles—the potential of vegetation models. Ecography 41, 1–21 (2018).
Bufalo, F. S., Galetti, M. & Culot, L. Seed dispersal by primates and implications for the conservation of a biodiversity hotspot, the Atlantic Forest of South America. Int. J. Primatol. https://doi.org/10.1007/s10764-016-9903-3 (2016).
Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3(1), e1600946 (2017).
Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: a pantropical meta-analysis. Biol. Conserv. 215, 30–38 (2017).
Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6(1), 1–16 (2016).
Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16(10), 1245–1257 (2013).
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Janson, C. H. & Emmons, L. Ecological structure of the nonflying mammal community at Cocha Cashu Biological Station, Manu National Park, Peru. In Four Neotropical Rainforests (ed. Gentry, A. H.) 314–338 (Yale University Press, New Haven, 1990).
Peres, C. A. Structure of nonvolant mammal communities in different Amazonian Forest types. In Mammals of the Neotropics: The Central Neotropics (eds Eisenberg, J. F. & Redford, K. H.) 564–581 (University of Chicago, Chicago, 1999).
Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam.12137 (2018).
Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).
Oliveira, L. E. C. & Begossi, A. Last trip return rate influence patch choice decisions of small-scale shrimp trawlers: optimal foraging in São Francisco, Coastal Brazil. Hum. Ecol. 39, 323–332 (2011).
Cardillo, M. The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator?. J. Anim. Ecol. 71, 79–87 (2002).
Source: Ecology - nature.com