in

Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics

  • 1.

    Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).

    Google Scholar 

  • 2.

    Hershkovitz, P. A geographic classification of Neotropical mammals. Chicago natural history museum. Fieldiana Zool. 36, 581–620 (1958).

    Google Scholar 

  • 3.

    Feeley, K. J. & Stroud, J. T. Where on Earth are the “tropics”?. Front. Biogeogr. 10(2), e38649. https://doi.org/10.21425/F5101-238649 (2018).

    Article  Google Scholar 

  • 4.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11), 933–938 (2011).

    Google Scholar 

  • 5.

    Udvardy, M.D.F. A classification of the biogeographical provinces of the world. IUCN Occasional Papers n° 18 (1975).

  • 6.

    Canale, G. R., Peres, C. A., Guidorizzi, C. E., Gatto, C. A. F. & Kierulff, M. C. M. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7, e41671 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Antunes, A. P. et al. Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci. Adv. 2, e1600936 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Galetti, M. et al. Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant. Anim. Conserv. https://doi.org/10.1111/acv.12311 (2016).

    Article  Google Scholar 

  • 9.

    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113(4), 892–897 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368 (2020).

    Google Scholar 

  • 11.

    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. 117(13), 7095–7102 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20(4), 1251–1261 (2006).

    PubMed  Google Scholar 

  • 13.

    Ceddia, M. G. et al. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl. Acad. Sci. 111(2), 7242–7247 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Pastro, L. A., Dickman, C. R. & Letnic, M. Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Glob. Ecol. Biogeogr. 23, 1146–1156 (2014).

    Google Scholar 

  • 15.

    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).

    ADS  PubMed  Google Scholar 

  • 16.

    Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Nat. Conserv. 14, e1–e16 (2016).

    Google Scholar 

  • 17.

    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, Causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).

    Google Scholar 

  • 18.

    Redford, K. H. The empty forest. Bioscience 42, 412–422 (1992).

    Google Scholar 

  • 19.

    Terborgh, J. The big things that run the world: a sequel to E.O. Wilson. Conserv. Biol. 2(4), 402–403 (1988).

    Google Scholar 

  • 20.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Levi, T. & Peres, C. A. Dispersal vaccum in the seedling recruitment of a primate-dispersed Amazonian tree. Biol. Conserv. 163, 99–106 (2013).

    Google Scholar 

  • 22.

    Bogoni, J. A., da Silva, P. G. & Peres, C. A. Co-declining mammal–dung beetle faunas throughout the Atlantic Forest biome of South America. Ecography 42, 1803–1818 (2019).

    Google Scholar 

  • 23.

    Lacher, T. E. et al. The functional roles of mammals in ecosystems. J. Mammal. 100(3), 942–964 (2019).

    Google Scholar 

  • 24.

    Kaufman, D. M. Diversity of new world mammals: universality of the latitudinal gradients of species and bauplans. J. Mammal. 76(2), 322–334 (1995).

    MathSciNet  Google Scholar 

  • 25.

    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103(51), 19374–19379 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096 (2017).

    Google Scholar 

  • 27.

    Lima, F. et al. ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98(11), 2979 (2017).

    PubMed  Google Scholar 

  • 28.

    Souza, Y. et al. ATLANTIC MAMMALS: a data set of assemblages of medium- and large-sized mammals of the Atlantic Forest of South America. Ecology 100(10), e02785 (2019).

    PubMed  Google Scholar 

  • 29.

    Janzen, D. H. (ed.) Costa Rican Natural History (The University of Chicago Press, Chicago, 1983).

    Google Scholar 

  • 30.

    Gentry, A. H. (ed.) Four Neotropical Rainforest (Yale University Press, London, 1993).

    Google Scholar 

  • 31.

    Nadkarni, N.M. & Wheelwright, N.T. (eds.). Monteverde: Ecology and Conservation of a Tropical Cloud Forest—2014 Updated Chapters. Bowdoin Scholars Bookshelf (2014).

  • 32.

    Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    IUCN Spatial data download: mammals. https://www.iucnredlist.org/technicaldocuments/spatial-data#mammals. Accessed 11 June 2018. (2016).

  • 34.

    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos Trans. R. Soc. Lond. B Biol. Sci. 366, 2633–2641 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    González-Maya, J. F., Martínez-Meyer, E., Medellín, R. & Ceballos, G. Distribution of mammal functional diversity in the Neotropical realm: influence of land-use and exticton risk. PLoS ONE 12(4), e0175931 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 2017, 1–12. https://doi.org/10.1111/geb.12601 (2017).

    Article  Google Scholar 

  • 37.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9), 2648 (2009).

    Google Scholar 

  • 38.

    Wilman, H. et al. Elton traits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95(7), 2027–2027 (2014).

    Google Scholar 

  • 39.

    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN), Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2005). https://doi.org/10.7927/H4M61H5F.

  • 40.

    Kobayashi, T. et al. Production of global land cover data—GLCNMO2013. J. Geogr. Geol. 9(3), 1–15 (2017).

    Google Scholar 

  • 41.

    NASA Earth Observatory. Maps created by Jesse Allen and Reto Stockli, NASA Earth Observatory, using data courtesy the MODIS Land Science Team at NASA Goddard Space Flight Center (2020). https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD14A1_M_FIRE&year=2018.

  • 42.

    Bogoni, J. A. et al. What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity?. Biol. Conserv. 211, 85–94 (2017).

    Google Scholar 

  • 43.

    Morrone, J. J. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782(1), 1–110 (2014).

    PubMed  Google Scholar 

  • 44.

    Google Earth. KML gallery: explore the earth on Google (2020). https://earth.google.com/gallery/index.html.

  • 45.

    Bayes, T. An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1764).

    MathSciNet  MATH  Google Scholar 

  • 46.

    Cressie, N. A. C. Statistics for Spatial Data Revised. (Wiley, Hoboken, 1993).

    Google Scholar 

  • 47.

    Rabinowitz, D. Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (Wiley, Hoboken, 1981).

    Google Scholar 

  • 48.

    Yu, J. & Dobson, F. S. Seven forms of rarity in mammals. J. Biogeogr. 27, 131–139 (2000).

    Google Scholar 

  • 49.

    Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).

    Google Scholar 

  • 50.

    Bogoni, J. A., Pires, J. S. R., Graipel, M. E., Peroni, N. & Peres, C. A. Wish you were here: how defaunated is the Atlantic Forest biome of its medium- to large bodied mammal fauna?. PLoS ONE 13(9), e0204515 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 (2008).

    Article  Google Scholar 

  • 52.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).

  • 53.

    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 54.

    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  • 55.

    Kamata, A. & Bauer, D. J. A note on the relation between factor analytic and item response theory models. Struct. Equ. Model. 15(1), 136–153 (2008).

    MathSciNet  Google Scholar 

  • 56.

    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).

    PubMed  Google Scholar 

  • 57.

    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Soft. 48(2), 1–36 (2012).

    Google Scholar 

  • 58.

    Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 59.

    Wen, Z. et al. Using completeness and defaunation indices to understand nature reserve’s key attributes in preserving medium- and large-bodied mammals. Biol. Conserv. 241, 108273 (2020).

    Google Scholar 

  • 60.

    Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martinez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understorey diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 282, 2580 (2015).

    Google Scholar 

  • 61.

    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Dean, W. With Broadax and Firebrand: The Destruction of the Brazilian Atlantic Forest (University of California Press, Berkeley, 1996).

    Google Scholar 

  • 64.

    Galetti, M. et al. Priority areas for the conservation of Atlantic forest large mammals. Biol. Conserv. 142(6), 1229–1241 (2009).

    Google Scholar 

  • 65.

    Leal, I. R., Silva, J. M. C., Tabarelli, M. & Lacher, T. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 19(3), 701–706 (2005).

    Google Scholar 

  • 66.

    Chesser, T. & Hackett, S. J. Mammalian diversity in South America. Science 256, 1502–1504 (1992).

    ADS  Google Scholar 

  • 67.

    Ojeda, R. A. Diversity and Conservation of Neotropical Mammals. Encyclopedia of Biodiversity 2nd edn. (Academic Press, Waltham, 2013).

    Google Scholar 

  • 68.

    Hansen, M. C. et al. High resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Lapola, D. M. et al. Pervasive transition of the Brazilian land-use system. Nat. Clim. Change 4, 27–35 (2014).

    ADS  Google Scholar 

  • 70.

    Ceddia, M. G. The super-rich and cropland expansion via direct investments in agriculture. Nat. Sustain. 3(4), 312–318 (2020).

    Google Scholar 

  • 71.

    Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Joppa, L. N., Loarle, S. R. & Pimm, S. L. On the protection of ‘“protected areas”’. Proc. Natl. Acad. Sci. 105(18), 6673–6678 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 73.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Oliveira, U. et al. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 9141 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Begotti, R.A. & Peres, C.A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy (2020) (in press).

  • 77.

    Levi, T., Shepard, G. H., Ohl-Schacherer, J. & Peres, C. A. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46, 804–814 (2009).

    Google Scholar 

  • 78.

    Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17(5), e3000247 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Sanderson, E. S. et al. The human footprint and the last of the wild. Bioscience 52(10), 891–904 (2002).

    Google Scholar 

  • 80.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Belote, R. T. et al. Mammal species composition reveals new insights into Earth’s remaining wilderness. Front. Ecol. Environ. https://doi.org/10.1002/fee.2192 (2020).

    Article  Google Scholar 

  • 82.

    Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 83.

    Phillips, H. R. P., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 84.

    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14(4), e0215152 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Magioli, M. M. et al. Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. 116(37), 18466–18472 (2019).

    CAS  PubMed  Google Scholar 

  • 86.

    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 87.

    Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian Forests with implications for REDD. Science 328, 1275–1278 (2010).

    ADS  PubMed  Google Scholar 

  • 88.

    Martin, P. S. Discovery of America. Science 179, 969–974 (1973).

    ADS  CAS  PubMed  Google Scholar 

  • 89.

    Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals (Yale University Press, New Haven, 1980).

    Google Scholar 

  • 90.

    Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  • 91.

    Brown, J. H. & Sibly, R. M. Life-history evolution under a production constraint. Proc. Natl. Acad. Sci. 103(47), 17595–17599 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 92.

    Hone, D. W. & Benton, M. J. The evolution of large size: how does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).

    PubMed  Google Scholar 

  • 93.

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 94.

    Cardillo, M. et al. The predictability of extinction- biological and external correlates of decline in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).

    Google Scholar 

  • 95.

    Beca, G. et al. High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 210, 352–359 (2017).

    Google Scholar 

  • 96.

    Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. 114(29), 7635–7640 (2017).

    CAS  PubMed  Google Scholar 

  • 97.

    Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).

    PubMed  Google Scholar 

  • 98.

    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. 113(4), 856–861 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 99.

    Rees, J. D., Kingsford, R. T. & Letnic, M. In the absence of an apex predator, irruptive herbivores suppress grass seed production: implications for small granivores. Biol. Conserv. 213, 13–18 (2017).

    Google Scholar 

  • 100.

    Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles—the potential of vegetation models. Ecography 41, 1–21 (2018).

    Google Scholar 

  • 101.

    Bufalo, F. S., Galetti, M. & Culot, L. Seed dispersal by primates and implications for the conservation of a biodiversity hotspot, the Atlantic Forest of South America. Int. J. Primatol. https://doi.org/10.1007/s10764-016-9903-3 (2016).

    Article  Google Scholar 

  • 102.

    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3(1), e1600946 (2017).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • 103.

    Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: a pantropical meta-analysis. Biol. Conserv. 215, 30–38 (2017).

    Google Scholar 

  • 104.

    Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6(1), 1–16 (2016).

    Google Scholar 

  • 105.

    Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16(10), 1245–1257 (2013).

    PubMed  Google Scholar 

  • 106.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Google Scholar 

  • 107.

    Janson, C. H. & Emmons, L. Ecological structure of the nonflying mammal community at Cocha Cashu Biological Station, Manu National Park, Peru. In Four Neotropical Rainforests (ed. Gentry, A. H.) 314–338 (Yale University Press, New Haven, 1990).

    Google Scholar 

  • 108.

    Peres, C. A. Structure of nonvolant mammal communities in different Amazonian Forest types. In Mammals of the Neotropics: The Central Neotropics (eds Eisenberg, J. F. & Redford, K. H.) 564–581 (University of Chicago, Chicago, 1999).

    Google Scholar 

  • 109.

    Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).

    PubMed  Google Scholar 

  • 110.

    Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam.12137 (2018).

    Article  Google Scholar 

  • 111.

    Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).

    Google Scholar 

  • 112.

    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 113.

    Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).

    Google Scholar 

  • 114.

    Oliveira, L. E. C. & Begossi, A. Last trip return rate influence patch choice decisions of small-scale shrimp trawlers: optimal foraging in São Francisco, Coastal Brazil. Hum. Ecol. 39, 323–332 (2011).

    Google Scholar 

  • 115.

    Cardillo, M. The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator?. J. Anim. Ecol. 71, 79–87 (2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Effectiveness of protected areas in conserving tropical forest birds

    Did our early ancestors boil their food in hot springs?