Herrera, C. M., Jordano, P., Guitian, J. & Traveset, A. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am. Nat. 152, 576–594 (1998).
Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).
Kelly, D. & Sork, V. L. Mast seeding in perennial plants: why, how, where? Annu. Rev. Ecol. Evol. Syst. 33, 427–447 (2002).
Nussbaumer, A. et al. Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe. For. Ecol. Manag. 363, 237–251 (2016).
Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).
Vacchiano, G. et al. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol. 215, 595–608 (2017).
Drobyshev, I., Niklasson, M., Mazerolle, M. J. & Bergeron, Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric. For. Meteor. 192-193, 9–17 (2014).
Drobyshev, I. et al. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For. Ecol. Manag. 259, 2160–2171 (2010).
Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 1–12 (2015).
Lebourgeois, F. et al. Assessing the roles of temperature, carbon inputs and airborne pollen as drivers of fructification in European temperate deciduous forests. Eur. J. For. Res. 137, 349–365 (2018).
Nussbaumer, A. et al. Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe. For. Ecol. Manag. 429, 336–350 (2018).
Matthews, J. D. The influence of weather on the frequency of beech mast years in England. Forestry 28, 107–116 (1955).
Hilton, G. M. & Packham, J. R. Variation in the masting of common beech (Fagus sylvatica L.) in northern Europe over two centuries (1800–2001). Forestry 76, 319–328 (2003).
Bogdziewicz, M., Steele, M. A., Marino, S. & Crone, E. E. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants. New Phytol. 219, 98–108 (2018).
Bogdziewicz, M. et al. Environmental veto synchronizes mast seeding in four contrasting tree species. Am. Nat. 194, 246–259 (2019).
Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).
Geburek, T., Hiess, K., Litschauer, R. & Milasowsky, N. Temporal pollen pattern in temperate trees: expedience or fate? Oikos 121, 1603–1612 (2012).
Crone, E. E. & Rapp, J. M. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. N. Y. Acad. Sci. 1322, 21–34 (2014).
Eichhorn, J. et al. Assessment of drought resistance of beech exemplified by the 2003 extreme weather conditions. Ergebnisse angewandter Forschung zur Buche. 109–134. (Universitätsverlag Göttingen, 2008).
Stephenson, A. G. Flower and fruit abortion: proximate causes and ultimate functions. Annu. Rev. Ecol. Syst. 12, 253–279 (1981).
Goubitz, S., Werger, M. J. A., Shmida, A. & Ne’eman, G. Cone abortion in Pinus halepensis: the role of pollen quantity, tree size and cone location. Oikos 97, 125–133 (2002).
Isagi, Y., Sugimura, K., Sumida, A. & Ito, H. How does masting happen and synchronize? J. Theoret. Biol. 187, 231–239 (1997).
Satake, A. & Iwasa, Y. Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J. Theoret. Biol. 203, 63–84 (2000).
Venner, S. et al. Fruiting strategies of perennial plants: a resource budget model to couple mast seeding to pollination efficiency and resource allocation strategies. Am. Nat. 188, 66–75 (2016).
Di Liberto, T. A hot, dry summer has led to drought in Europe in 2018, https://www.climate.gov/news-features/event-tracker/hot-dry-summer-has-led-drought-europe-2018 (2018).
Rigling, A. et al. Wie viel Trockenheit ertragen unsere Wälder? Lehren aus extremen Trockenjahren. Forum für Wissen 78, 39–51 (2019).
MeteoSwiss. Hitze und Trockenheit im Sommerhalbjahr 2018 – eine klimatologische Übersicht. In: Fachbericht MeteoSchweiz 272, (Swiss Federal Office of Meteorology and Climatology, Zürich, Switzerland, 2018).
MeteoSwiss. Klimareport 2018. (Swiss Federal Office of Meteorology and Climatology, Zürich, Switzerland, 2019).
BFS Swiss Federal Statistical Office. Swiss Forestry Statistics 2018, https://www.bfs.admin.ch/bfs/en/home/statistics/agriculture-forestry.gnpdetail.2019-0446.html (2019).
Schaub, M., Dobbertin, M., Kräuchi, N. & Kaennel Dobbertin, M. Preface—long-term ecosystem research: understanding the present to shape the future. Environ. Monit. Assess. 174, 1–2, https://doi.org/10.1007/s10661-010-1756-1 (2011).
Williamson, M. J. Premature abscissions and white oak acorn crops. For. Sci. 12, 19–21 (1966).
Bogdziewicz, M. et al. From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol. Lett. 23, 210–220 (2020).
MeteoSwiss. Klimareport 2013. (Swiss Federal Office of Meteorology and Climatology, Zürich, Switzerland, 2014).
Dittmar, C., Zech, W. & Elling, W. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. For. Ecol. Manag. 173, 63–78 (2003).
Piovesan, G., Biondi, F., Di Filippo, A., Alessandrini, A. & Maugeri, M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 14, 1–17 (2008).
Scharnweber, T., Manthey, M. & Wilmking, M. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiol. 33, 425–437 (2013).
Waring, R. H. Characteristics of trees predisposed to die. BioScience 37, 569–574 (1987).
Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333 (2005).
Lavee, S. Biennial bearing in olive (Olea europaea). Annales, Series Hist. Nat. 17, 101–112 (2007).
Lorenz, R., Stalhandske, Z. & Fischer, E. M. Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett. 46, 8363–8374 (2019).
CH2018. CH2018 – Climate Scenarios for Switzerland. Technical Report. National Centre for Climate Services (2018).
Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013).
MeteoSwiss. Pollen monitoring network, https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/land-based-stations/pollen-monitoring-network.html (2020).
Ukonmaanaho, L., Pitman, R., Bastrup-Birk, A., Breda, N. & Rautio, P. Part XIII: Sampling and Analysis of Litterfall. (ed. UNECE ICP Forests Programme Co-ordinating Centre) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. (Thünen Institute for Forest Ecosystems, Eberswalde, Germany, 2016).
Rebetez, M. et al. Meteorological data series from Swiss long-term forest ecosystem research plots since 1997. Ann. For. Sci. 75, 41–48 (2018).
Thimonier, A. et al. Total deposition of nitrogen in Swiss forests: comparison of assessment methods and evaluation of changes over two decades. Atmos. Environ. 198, 335–350 (2019).
Raspe, S., Beuker, E., Preuhsler, T. & Bastrup-Birk, A. Part IX: Meteorological Measurements. (ed. UNECE ICP Forests Programme Co-ordinating Centre) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (Thünen Institute for Forest Ecosystems, Eberswalde, Germany, 2016).
Clarke, N. et al. Part XIV: Sampling and Analysis of Deposition. (ed. UNECE ICP Forests Programme Co-ordinating Centre) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (Thünen Institute for Forest Ecosystems, Eberswalde, Germany, 2016).
Graf Pannatier, E., Thimonier, A., Schmitt, M., Walthert, L. & Waldner, P. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: Can we observe trends in atmospheric acid deposition and in soil solution acidity? Environ. Monit. Assess. 174, 3–30, https://doi.org/10.1007/s10661-010-1754-3 (2011).
Gehrig, R. Representativeness of pollen traps: a review of the national pollen network of Switzerland. Aerobiologia 35, 577–581 (2019).
Galán, C. et al. Recommended terminology for aerobiological studies. Aerobiologia 33, 293–295 (2017).
Krivoruchko, K. & Gribov, A. Pragmatic Bayesian Kriging for Non-Stationary and Moderately Non-Gaussian Data. Mathematics of Planet Earth, 61–64 (Berlin, Heidelberg, 2014).
Wüest, R. O., Bergamini, A., Bollmann, K. & Baltensweiler, A. LiDAR data as a proxy for light availability improve distribution modelling of woody species. For. Ecol. Manag. 456, 117644, https://doi.org/10.1016/j.foreco.2019.117644 (2019).
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).
Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer Verlag, New York, 2002).
Barton, K. MuMIn: Multi-model inference. R package version 1.40.0 (2017).
Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. (Thousand Oaks CA: Sage, 2019).
Zeileis, A. & Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2(3), 7–10 (2002).
Source: Ecology - nature.com