in

Factors and costs associated with removal of a newly established population of invasive wild pigs in Northern U.S.

  • 1.

    Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewiski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. Bioscience 64, 291–299 (2014).

    Google Scholar 

  • 2.

    Corn, J. L. & Jordan, T. R. Development of the National feral swine map, 1982–2016. Wildl. Soc. B. 41, 758–763 (2017).

    Google Scholar 

  • 3.

    McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the Contiguous United States. PLoS ONE 10, e0133771 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Snow, N. P., Jarzyna, M. A. & VerCauteren, K. C. Interpreting and predicting the spread of invasive wild pigs. J. Appl. Ecol. 54, 2022–2032 (2017).

    Google Scholar 

  • 5.

    Anderson, A., Slootmaker, C., Harper, E., Holderieath, J. & Shwiff, S. A. Economic estimates of feral swine damage and control in 11 US states. Crop Prot. 89, 89–94 (2016).

    Google Scholar 

  • 6.

    Holderieath, J. J. et al. Valuing the absence of feral swine in the United States: a partial equilibrium approach. Crop Prot. 112, 63–66 (2018).

    Google Scholar 

  • 7.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    Google Scholar 

  • 8.

    Barrios-Garcia, N. M. & Balairi, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).

    Google Scholar 

  • 9.

    Seward, N. K., VerCauteren, K. C., Witmer, G. W. & Engeman, R. M. Feral swine impacts on agriculture and the environment. Sheep Goat Res. J. 19, 34–40 (2004).

    Google Scholar 

  • 10.

    Centner, T. J. & Shuman, R. M. Governmental provisions to manage and eradicate feral swine in areas of the United States. Ambio 44, 121–130 (2015).

    PubMed  Google Scholar 

  • 11.

    United States Department of Agriculture. Final Environmental Impact Statement Feral swine damage management: a national approach. https://www.aphis.usda.gov/aphis/resources/pests-diseases/feral-swine/feral-swine-eis (2015).

  • 12.

    Engeman, R. M. et al. Locating and eliminating feral swine from a large area of fragmented mixed forest and agriculture habitats in north-central USA. Environ. Sci. Pollut. R. 26, 1654–1660 (2019).

    Google Scholar 

  • 13.

    Graves, H. B. Behavior and ecology and wild and feral swine (Sus scrofa). J. Anim. Sci. 58, 482–492 (1984).

    Google Scholar 

  • 14.

    Comer, C. E. & Mayer, J. J. Wild pig reproductive biology. In: Mayer, J.J & Brisbin, I.L. (eds) Wild pigs: biology, damage, control techniques and management. Savannah River National Laboratory SRNL-RP-2009-00869, Aiken, South Carolina, USA, 51–75 (2009).

  • 15.

    West, B. C., Cooper, A. L. & Armstrong, J. B. Managing wild pigs: a technical guide. Human-Wildl. Integr. Monogr. 1, 1–55 (2009).

    Google Scholar 

  • 16.

    Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Geisser, H. & Reyer, H. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag. 68, 939–946 (2004).

    Google Scholar 

  • 18.

    Wang, S. W., Curtis, P. D. & Lassoie, J. P. Farmer perceptions of crop damage by wildlife in Jigme Singye Wangchuck National Park, Bhutan. Wildlife Soc. B. 34, 389–395 (2006).

    CAS  Google Scholar 

  • 19.

    Morelle, K. & Lejeune, P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modelling approach. Eur. J. Wildlife Res. 61, 45–56 (2015).

    Google Scholar 

  • 20.

    Virgos, E. Factors affecting wild boar (Sus scrofa) occurrence in highly fragmented Mediterranean landscapes. Can. J. Zool. 80, 430–435 (2002).

    Google Scholar 

  • 21.

    Michel, N. L., LaForge, M. P., Van Beest, F. M. & Brook, R. K. Spatiotemporal trends in Canadian domestic wild boar production and habitat predict wild pig distribution. Landscape Urban Plan. 165, 30–38 (2017).

    Google Scholar 

  • 22.

    Keuling, O., Stier, N. & Roth, M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.?. Eur. J. Wildl. Res. 54, 729–737 (2008).

    Google Scholar 

  • 23.

    Campbell, T. A. & Long, D. B. Activity patterns of wild boars (Sus scrofa) in southern Texas. Southwest. Nat. 55, 564–600 (2010).

    Google Scholar 

  • 24.

    Fischer, J. W. et al. Effects of simulated removal activities on movements and space use of feral swine. Eur. J. Wildl. Res. 62, 285–292 (2016).

    Google Scholar 

  • 25.

    Hernandez, F. A. et al. Invasive ecology of wild pigs (Sus scrofa) in Florida, USA: the role of humans in the expansion and colonization of an invasive wild ungulate. Biol. Invasions 20, 1865–1880 (2018).

    Google Scholar 

  • 26.

    McCann, B. E. et al. Molecular population structure for feral swine in the United States. J. Wildl. Manag. 82, 821–832 (2018).

    Google Scholar 

  • 27.

    Pepin, K. M., Davis, A. J., Cunningham, F. L., VerCauteren, K. C. & Ekery, D. C. Potential effects of incorporating fertility control into typical culling regimes in wild pig populations. PLoS ONE 12, e0183441 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Wilcox, J. T., Aschehoug, E. T., Scott, C. A. & Van Vuren, D. H. A test of the judas technique as a method for eradicating feral pigs. Trans. West. Sect. Wildl. Soc. 40, 120–126 (2004).

    Google Scholar 

  • 29.

    McCann, B. E. & Garcelon, D. K. Eradication of feral pigs from Pinnacles National Monument. J. Wildl. Manag. 72, 1287–1295 (2008).

    Google Scholar 

  • 30.

    Parkes, J. P. et al. Rapid eradication of feral pigs (Sus scrofa) from Santa Cruz Island, California. Biol. Conserv. 143, 634–641 (2010).

    Google Scholar 

  • 31.

    Williams, B. L., Holtfreter, R. W., Ditchkoff, S. S. & Grand, J. B. Efficiency of time-lapse intervals and simple baits for camera surveys of wild pigs. J. Wildl. Manag. 75, 655–659 (2011).

    Google Scholar 

  • 32.

    Engeman, R. M., Massei, G., Sage, M. & Gentle, M. N. Monitoring wild pig populations: a review of methods. Environ. Sci. Pollut. R. 20, 8077–8091 (2013).

    CAS  Google Scholar 

  • 33.

    Davis, A. J. et al. Quantifying site-level usage and certainty of absence for an invasive species though occupancy analysis of camera-trap data. Biol. Invasions 20, 877–890 (2018).

    Google Scholar 

  • 34.

    Peine, J. D. & Farmer, J. A. Wild hog management program at Great Smoky Mountain National Park. Proceedings of the 14 thVertebrate Pest Management Conference 14, 221–227 (1990).

  • 35.

    Saunders, G., Kay, B. & Nicol, H. Factors affecting bait uptake and trapping success for feral pigs (Sus scrofa) in Kosciusko National Park. Wildl. Res. 20, 653–665 (1993).

    Google Scholar 

  • 36.

    Phillips, L. M., Smith, M. D. & Johnson, D. K. Effects of opportunistic shooting on trap visitation by wild pigs. Proceedings of the 15th Wildlife Damage Management Conference 15, 37–38 (2013).

  • 37.

    Bowman, B., Belant, J. L., Beyer, D. E. & Martel, D. Characterizing nontarget species use at bait sites for white-tailed deer. Hum.-Wildl. Interact. 9, 110–118 (2015).

    Google Scholar 

  • 38.

    Schley, L., Dufrene, M., Krier, A. & Frantz, A. C. Patterns of crop damage by wild boar (Sus scrofa) in Luxembourg over a 10-year period. Eur. J. Wildl. Res. 54, 589–599 (2008).

    Google Scholar 

  • 39.

    Engeman, R. M., Terry, J., Stephens, L. R. & Gruver, K. S. Prevalence and amount of feral swine damage to three row crops at planting. Crop Prot. 112, 252–256 (2018).

    Google Scholar 

  • 40.

    United States Department of Agriculture. Field Crops Usual Planting and Harvesting Dates (October 2010). https://usda.library.cornell.edu/concern/publications/vm40xr56k?locale=en (2010).

  • 41.

    R: A language and environment for statistical computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2017, https://www.R-project.org.

  • 42.

    Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 23, 743–757 (2013).

    MathSciNet  CAS  MATH  Google Scholar 

  • 43.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 44.

    MuMIn. R package version 1.43.17 (2020)

  • 45.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 46.

    Lukacs, P. M., Burnham, K. P. & Anderson, D. R. Model selection bias and Freedman’s paradox. Ann. I. Stat. Math. 62, 117–125 (2010).

    MathSciNet  MATH  Google Scholar 

  • 47.

    Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2010).

    Google Scholar 

  • 48.

    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. Evol. Biol. 24, 699–711 (2011).

    CAS  Google Scholar 

  • 49.

    Bodenchuk, M. Method-specific costs of feral swine removal in a large metapopulation: the Texas experience. Proceedings of the 26 thVertebrate Pest Conference 26, 269–271 (2014).

  • 50.

    Davis, A. J., Leland, B., Bodenchuk, M., VerCauteren, K. C. & Pepin, K. Costs and effectiveness of damage management of an overabundant species. Wildlife Res. 45, 696–705 (2018).

    Google Scholar 

  • 51.

    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Mortality of wild boar, Sus scrofa, in a Mediterranean area in relation to sex and age. J. Zool. 242, 394–400 (1997).

    Google Scholar 

  • 52.

    Castillo-Contreras, R., Carvalho, J., Serrano, E., Mentaberre, G. & Fernandez-Aguilar, X. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Gonzalez-Crespo, C., Serrano, E., Cahill, S., Castillo-Contreras, R. & Cabaneros, L. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS ONE 13, e0202289 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Van Vuren, D. Diurnal activity and habitat use by feral pigs on Santa Cruz Island, California. Calif. Fish Game 70, 140–144 (1984).

    Google Scholar 

  • 55.

    Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1984).

    Google Scholar 

  • 56.

    Dexter, N. The influence of pasture distribution and temperature on habitat selection by feral pigs in a semi-arid environment. Wildlife Res. 25, 547–559 (1998).

    Google Scholar 

  • 57.

    Choquenot, D. & Ruscoe, W. S. Landscape complementation and food limitation of large herbivores: habitat-related constraints on the foraging efficiency of wild pigs. J. Anim. Ecol. 72, 14–26 (2003).

    Google Scholar 

  • 58.

    Dardaillon, M. Seasonal variations in habitat selection and spatial distribution of wild boar (Sus scrofa) in the Camargue, southern France. Behav. Process. 13, 251–268 (1986).

    CAS  Google Scholar 

  • 59.

    Waithman, J. Guide to Hunting Wild Pigs in California (California Department of Fish and Game, Sacramento, 2001).

    Google Scholar 

  • 60.

    Snow, N. P. et al. Bait preference of free-ranging feral swine for delivery of a novel toxicant. PLoS ONE 11, e0146712 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Brivio, F. et al. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. 84, 73–81 (2017).

    Google Scholar 

  • 62.

    Choquenot, D., Hone, J. & Saunders, G. Using aspects of predator-prey theory to evaluate helicopter shooting for feral pig control. Wildl. Res. 26, 251–261 (1999).

    Google Scholar 

  • 63.

    Pepin, K. M., Snow, N. P. & VerCauteren, K. C. Optimal bait density for delivery of acute toxicants to vertebrate pests. J. Pest Sci. 93, 723–735 (2020).

    Google Scholar 

  • 64.

    Lancia, R. A., Bishir, J. W., Conner, M. C. & Rosenberry, C. S. Use of catch-effort to estimate population size. Wildl. Soc. B. 24, 731–737 (1996).

    Google Scholar 

  • 65.

    McIlroy, J. C. & Gifford, E. J. The ‘Judas’ pig technique for controlling feral pigs. Wildl. Res. 24, 483–491 (1997).

    Google Scholar 

  • 66.

    Ditchkoff, S. S., Jolley, D. B., Sparklin, B. D., Hanson, L. B. & Mitchell, M. S. Reproduction in a population of wild pigs (Sus scrofa) subjected to lethal control. J. Wildl. Manag. 76, 1235–1240 (2012).

    Google Scholar 

  • 67.

    Brook, R. K. & Van Beest, F. M. Feral wild boar distribution and perceptions of risk on central Canadian Prairies. Wildl. Soc. B. 38, 486–494 (2014).

    Google Scholar 

  • 68.

    Stolle, K., Van Beest, F. M., Wal, E. D. & Brook, R. K. Diurnal and nocturnal activity patterns of invasive wild boar (Sus scrofa) in Saskatchewan, Canada. Can. Field Nat. 129, 76–79 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals