in

Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions

  • 1.

    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).

    CAS  Google Scholar 

  • 2.

    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 15 (2011).

    Google Scholar 

  • 3.

    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Google Scholar 

  • 4.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    CAS  Google Scholar 

  • 5.

    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).

    Google Scholar 

  • 6.

    Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (Arctic Monitoring and Assessment Programme (AMAP), 2017).

  • 7.

    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).

    CAS  Google Scholar 

  • 8.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Google Scholar 

  • 9.

    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  Google Scholar 

  • 10.

    Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 9 (2011).

    Google Scholar 

  • 11.

    Cooper, E. J. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271–295 (2014).

    Google Scholar 

  • 12.

    Sanders-DeMott, R. & Templer, P. H. What about winter? Integrating the missing season into climate change experiments in seasonally snow covered ecosystems. Methods Ecol. Evol. 8, 1183–1191 (2017).

    Google Scholar 

  • 13.

    Bokhorst, S., Bjerke, J. W., Tommervik, H., Preece, C. & Phoenix, G. K. Ecosystem response to climatic change: the importance of the cold season. Ambio 41, 246–255 (2012).

    Google Scholar 

  • 14.

    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).

    Google Scholar 

  • 15.

    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121 (2009).

    Google Scholar 

  • 16.

    Bokhorst, S. F., Bjerke, J. W., Tommervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).

    Google Scholar 

  • 17.

    Rapacz, M. et al. Overwintering of herbaceous plants in a changing climate: still more questions than answers. Plant Sci. 225, 34–44 (2014).

    CAS  Google Scholar 

  • 18.

    Loffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).

    Google Scholar 

  • 19.

    Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).

    Google Scholar 

  • 20.

    Billings, W. D. & Mooney, H. A. Ecology of Arctic and alpine plants. Biol. Rev. Camb. Phil. Soc. 43, 481–529 (1968).

    Google Scholar 

  • 21.

    Cornelissen, J. H. C. & Makoto, K. Winter climate change, plant traits and nutrient and carbon cycling in cold biomes. Ecol. Res. 29, 517–527 (2014).

    CAS  Google Scholar 

  • 22.

    Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).

    CAS  Google Scholar 

  • 23.

    Deems, J. S., Fassnacht, S. R. & Elder, K. J. Interannual consistency in fractal snow depth patterns at two Colorado mountain sites. J. Hydrometeorol. 9, 977–988 (2008).

    Google Scholar 

  • 24.

    Wahren, C. H. A., Walker, M. D. & Bret-Harte, M. S. Vegetation responses in Alaskan Arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob. Change Biol. 11, 537–552 (2005).

    Google Scholar 

  • 25.

    Darrouzet-Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).

    Google Scholar 

  • 26.

    Nobrega, S. & Grogan, P. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10, 419–431 (2007).

    CAS  Google Scholar 

  • 27.

    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).

    Google Scholar 

  • 28.

    Blankinship, J. C., Meadows, M. W., Lucas, R. G. & Hart, S. C. Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada. Water Resour. Res. 50, 1448–1456 (2014).

    Google Scholar 

  • 29.

    Kranner, I., Beckett, R., Hochman, A. & Nash, T. H. Desiccation-tolerance in lichens: a review. Bryologist 111, 576–593 (2008).

    Google Scholar 

  • 30.

    Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99, 987–1001 (2007).

    CAS  Google Scholar 

  • 31.

    Sonesson, M. & Callaghan, T. V. Strategies of survival in plants of the Fennoscandian tundra. Arctic 44, 95–105 (1991).

    Google Scholar 

  • 32.

    Bjerke, J. W. et al. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J. Ecol. 99, 1481–1488 (2011).

    Google Scholar 

  • 33.

    Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. Are lichens active under snow in continental Antarctica? Oecologia 135, 30–38 (2003).

    Google Scholar 

  • 34.

    Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).

    Google Scholar 

  • 35.

    Weijers, S., Buchwal, A., Blok, D., Loffler, J. & Elberling, B. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world’s northernmost polar desert. Glob. Change Biol. 23, 5006–5020 (2017).

    Google Scholar 

  • 36.

    Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).

    Google Scholar 

  • 37.

    Strimbeck, G. R., Schaberg, P. G., Fossdal, C. G., Schroder, W. P. & Kjellsen, T. D. Extreme low temperature tolerance in woody plants. Front. Plant Sci. 6, 15 (2015).

    Google Scholar 

  • 38.

    Gonzalez, V. T. et al. High resistance to climatic variability in a dominant tundra shrub species. PeerJ 7, e6967 (2019).

    Google Scholar 

  • 39.

    Thomas, H. J. D. et al. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Glob. Ecol. Biogeogr. 28, 78–95 (2019).

    CAS  Google Scholar 

  • 40.

    Shipley, B., Lechowicz, M. J., Wright, I. & Reich, P. B. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87, 535–541 (2006).

    Google Scholar 

  • 41.

    Good, M., Morgan, J. W., Venn, S. & Green, P. Timing of snowmelt affects species composition via plant strategy filtering. Basic Appl. Ecol. 35, 54–62 (2019).

    Google Scholar 

  • 42.

    Cornelissen, J. H. C. et al. Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).

    Google Scholar 

  • 43.

    Zhu, L. K., Ives, A. R., Zhang, C., Guo, Y. Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).

    Google Scholar 

  • 44.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Google Scholar 

  • 45.

    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).

    Google Scholar 

  • 46.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Google Scholar 

  • 47.

    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).

    Google Scholar 

  • 48.

    Alsos, I. G. et al. Frequent long-distance plant colonization in the changing Arctic. Science 316, 1606–1609 (2007).

    CAS  Google Scholar 

  • 49.

    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).

    Google Scholar 

  • 50.

    Robinson, S. A. et al. Rapid change in east Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

    CAS  Google Scholar 

  • 51.

    Chamberlain, S. A. & Szocs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).

    Google Scholar 

  • 52.

    McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).

    Google Scholar 

  • 53.

    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019); https://www.r-project.org/

  • 54.

    Minchin, P. R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69, 89–107 (1987).

    Google Scholar 

  • 55.

    Oksanen, J. et al. vegan: community ecology package. R package version 2.3-3 (2016).

  • 56.

    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, 2009).

  • 57.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  Google Scholar 

  • 58.

    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: ensemble platform for species distribution modeling. R package version 3.3-7 (2016).

  • 59.

    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).

    Google Scholar 

  • 60.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Google Scholar 

  • 61.

    Ridgeway, G. gbm: generalized boosted regression models. R package version 2.1.1 (2015).

  • 62.

    Thuiller, W., Lafourcade, B., Engler, R. & Araujo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe