in

Fires prime terrestrial organic carbon for riverine export to the global oceans

  • 1.

    Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).

    Google Scholar 

  • 2.

    Ciais, P. et al. Carbon and other biogeochemical cycles. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Intergovernmental Panel on Climate Change) 465–570 (Cambridge University Press, 2013).

  • 3.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS  Google Scholar 

  • 4.

    Burd, A. B. et al. Terrestrial and marine perspectives on modeling organic matter degradation pathways. Glob. Chang. Biol. 22, 121–136 (2016).

    ADS  PubMed  Google Scholar 

  • 5.

    Sierra, C. A., Müller, M., Metzler, H., Manzoni, S. & Trumbore, S. E. The muddle of ages, turnover, transit, and residence times in the carbon cycle. Glob. Chang. Biol. 23, 1763–1773 (2017).

    ADS  PubMed  Google Scholar 

  • 6.

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

    ADS  CAS  Google Scholar 

  • 8.

    Dai, M., Yin, Z., Meng, F., Liu, Q. & Cai, W.-J. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Curr. Opin. Environ. Sustain. 4, 170–178 (2012).

    Google Scholar 

  • 9.

    Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    ADS  CAS  Google Scholar 

  • 11.

    Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Stubbins, A. & Dittmar, T. In Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 25–156 (Elsevier, 2014).

  • 13.

    Ward, N. D. et al. Where carbon goes when water flows: carbon cycling across the aquatic continuum. Front. Mar. Sci. 4, 1–27 (2017).

    Google Scholar 

  • 14.

    Opsahl, S. & Benner, R. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386, 480–482 (1997).

    ADS  CAS  Google Scholar 

  • 15.

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob. Biogeochem. Cycles 19, 1–7 (2005).

    Google Scholar 

  • 16.

    Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).

    ADS  CAS  Google Scholar 

  • 17.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

    ADS  CAS  Google Scholar 

  • 18.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS  Google Scholar 

  • 19.

    Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70, 229–236 (2014).

    CAS  Google Scholar 

  • 20.

    Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).

    ADS  CAS  Google Scholar 

  • 21.

    Santín, C., Doerr, S. H., Preston, C. & Bryant, R. Consumption of residual pyrogenic carbon by wildfire. Int. J. Wildl. Fire 22, 1072–1077 (2013).

    Google Scholar 

  • 22.

    Doerr, S. H., Santín, C., Merino, A., Belcher, C. M. & Baxter, G. Fire as a removal mechanism of pyrogenic carbon from the environment: effects of fire and pyrogenic carbon characteristics. Front. Earth Sci. 6, 1–13 (2018).

    Google Scholar 

  • 23.

    Koele, N. et al. Amazon Basin forest pyrogenic carbon stocks: first estimate of deep storage. Geoderma 306, 237–243 (2017).

    ADS  CAS  Google Scholar 

  • 24.

    Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles https://doi.org/10.1029/2006GB002798 (2007).

    Google Scholar 

  • 25.

    Coppola, A. I. et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat. Geosci. 11, 584–588 (2018).

    ADS  CAS  Google Scholar 

  • 26.

    Jaffe, R. et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340, 345–347 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet Sci. 43, 273–298 (2015).

    ADS  CAS  Google Scholar 

  • 28.

    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 22, 76–91 (2016).

    ADS  PubMed  Google Scholar 

  • 29.

    Hockaday, W., Grannas, A., Kim, S. & Hatcher, P. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 37, 501–510 (2006).

    CAS  Google Scholar 

  • 30.

    Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Masiello, C. A. & Druffel, E. R. M. Carbon isotope geochemistry of the Santa Clara River. Glob. Biogeochem. Cycles 15, 407–416 (2001).

    ADS  CAS  Google Scholar 

  • 32.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 1–14 (2016).

    Google Scholar 

  • 34.

    Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2, 175–179 (2009).

    ADS  CAS  Google Scholar 

  • 35.

    Coppola, A. I. & Druffel, E. R. M. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43, 4477–4482 (2016).

    ADS  CAS  Google Scholar 

  • 36.

    Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    CAS  PubMed  Google Scholar 

  • 37.

    Mitra, S., Zimmerman, A. R., Hunsinger, G. & Woerner, W. R. In Biogeochemical Dynamics at Major River-Coastal Interfaces (eds Bianchi, T., Allison, M. & Cai, W.-J.) 200–234 (Cambridge University Press, 2014).

  • 38.

    Hedges, J. I., Keil, R. G. & Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 27, 195–212 (1997).

    CAS  Google Scholar 

  • 39.

    Coppola, A. I., Ziolkowski, L. A., Masiello, C. A. & Druffel, E. R. M. Aged black carbon in marine sediments and sinking particles. Geophys. Res. Lett. 41, 2427–2433 (2014).

    ADS  CAS  Google Scholar 

  • 40.

    Ziolkowski, L. A. & Druffel, E. R. M. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37, 4–7 (2010).

    Google Scholar 

  • 41.

    Jones, M. W. et al. Do regional aerosols contribute to the riverine export of dissolved black carbon? J. Geophys. Res. Biogeosciences 122, 2925–2938 (2017).

    ADS  CAS  Google Scholar 

  • 42.

    Jones, M. W. et al. Environmental controls on the riverine export of dissolved black carbon. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018GB006140 (2019).

    ADS  CAS  Google Scholar 

  • 43.

    Dittmar, T. et al. Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat. Geosci. 5, 618–622 (2012).

    ADS  CAS  Google Scholar 

  • 44.

    Cheng, C. H., Lehmann, J., Thies, J. E. & Burton, S. D. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. Biogeosci. 113, 1–10 (2008).

    Google Scholar 

  • 45.

    Roebuck, J. A., Seidel, M., Dittmar, T. & Jaffe, R. Land use controls on the spatial variability of dissolved black carbon in a subtropical watershed. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b00190 (2018).

    ADS  CAS  Google Scholar 

  • 46.

    Mannino, A. & Harvey, H. R. Black carbon in estuarine and coastal ocean dissolved organic matter. Limnol. Oceanogr. 49, 735–740 (2004).

    ADS  CAS  Google Scholar 

  • 47.

    Riedel, T. et al. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten world rivers. Front. Earth Sci. 4, 1–16 (2016).

    Google Scholar 

  • 48.

    Stubbins, A. et al. Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. Front. Earth Sci. 3, 1–11 (2015).

    Google Scholar 

  • 49.

    Dittmar, T., Paeng, J., Gihring, T. M., Suryaputra, I. G. N. A. & Huettel, M. Discharge of dissolved black carbon from a fire-affected intertidal system. Limnol. Oceanogr. 57, 1171–1181 (2012).

    ADS  CAS  Google Scholar 

  • 50.

    Ding, Y., Yamashita, Y., Dodds, W. K. & Jaffé, R. Dissolved black carbon in grassland streams: Is there an effect of recent fire history? Chemosphere 90, 2557–2562 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Wagner, S., Cawley, K. M., Rosario-Ortiz, F. L. & Jaffé, R. In-stream sources and links between particulate and dissolved black carbon following a wildfire. Biogeochemistry 124, 145–161 (2015).

    CAS  Google Scholar 

  • 52.

    Wang, X., Xu, C., Druffel, E. M., Xue, Y. & Qi, Y. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China. Glob. Biogeochem. Cycles 30, 1778–1790 (2016).

    ADS  CAS  Google Scholar 

  • 53.

    Marques, J. S. J. et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil. Front. Earth Sci. 5, 1–12 (2017).

    ADS  Google Scholar 

  • 54.

    Coppola, A. I. et al. Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools. Nat. Commun. 10, 4018 (2019).

  • 55.

    Bao, H., Niggemann, J., Huang, D., Dittmar, T. & Kao, S. Different responses of dissolved black carbon and dissolved lignin to seasonal hydrological changes and an extreme rain event. J. Geophys. Res. Biogeosci. 124, 479–493 (2019).

    CAS  Google Scholar 

  • 56.

    Roebuck, J. A., Medeiros, P. M., Letourneau, M. L. & Jaffé, R. Hydrological controls on the seasonal variability of dissolved and particulate black carbon in the Altamaha River, GA. J. Geophys. Res. Biogeosci. 123, 3055–3071 (2018).

    CAS  Google Scholar 

  • 57.

    Wu, Y., Chan, E., Melton, J. R. & Verseghy, D. L. A map of global peatland distribution created using machine learning for use in terrestrial ecosystem and earth system models. Geosci. Model Dev. https://doi.org/10.5194/gmd-2017-152 (2017).

  • 58.

    Myers-Pigg, A. N., Louchouarn, P. & Teisserenc, R. Flux of dissolved and particulate low-temperature pyrogenic carbon from two high-latitude rivers across the spring freshet hydrograph. Front. Mar. Sci. 4, 1–11 (2017).

    Google Scholar 

  • 59.

    Wagner, S., Jaffé, R. & Stubbins, A. Dissolved black carbon in aquatic ecosystems. Limnol. Oceanogr. Lett. 3, 168–185 (2018).

    CAS  Google Scholar 

  • 60.

    Norwood, M. J., Louchouarn, P., Kuo, L.-J. & Harvey, O. R. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Org. Geochem. 56, 111–119 (2013).

    CAS  Google Scholar 

  • 61.

    Wagner, S. et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source. Nat. Commun. 10, 5064 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Rossel, P. E. et al. Thermally altered marine dissolved organic matter in hydrothermal fluids. Org. Geochem. 110, 73–86 (2017).

    CAS  Google Scholar 

  • 63.

    Dittmar, T. & Koch, B. P. Thermogenic organic matter dissolved in the abyssal ocean. Mar. Chem. 102, 208–217 (2006).

    CAS  Google Scholar 

  • 64.

    Roebuck, J. A., Podgorksi, D. C., Wagner, S. & Jaffé, R. Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments. Org. Geochem. 112, 16–21 (2017).

    Google Scholar 

  • 65.

    Jurado, E., Dachs, J., Duarte, C. M. & Simó, R. Atmospheric deposition of organic and black carbon to the global oceans. Atmos. Environ. 42, 7931–7939 (2008).

    ADS  CAS  Google Scholar 

  • 66.

    Bao, H., Niggemann, J., Luo, L., Dittmar, T. & Kao, S.-J. Aerosols as a source of dissolved black carbon to the ocean. Nat. Commun. 8, 510 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Opsahl, S. P. & Zepp, R. G. Photochemically-induced alteration of stable carbon isotope ratios (δ13C) in terrigeneous dissolved organic carbon. Geophys. Res. Lett. 28, 2417–2420 (2001).

    ADS  CAS  Google Scholar 

  • 68.

    Osburn, C. L., Morris, D. P., Thorn, K. A. & Moeller, R. E. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54, 251–278 (2001).

  • 69.

    Stubbins, A., Niggemann, J. & Dittmar, T. Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9, 1661–1670 (2012).

    ADS  CAS  Google Scholar 

  • 70.

    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Forkel, M. et al. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geosci. Model Dev. 10, 4443–4476 (2017).

    ADS  Google Scholar 

  • 72.

    Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C. & Veraverbeke, S. Influence of fire on the carbon cycle and climate. Curr. Clim. Chang. Rep. 5, 112–123 (2019).

    Google Scholar 

  • 73.

    Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).

    Google Scholar 

  • 74.

    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Chang 6, 781–785 (2016).

    ADS  Google Scholar 

  • 75.

    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 76.

    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).

    ADS  Google Scholar 

  • 77.

    Neff, J. C. & Asner, G. P. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4, 29–48 (2001).

    CAS  Google Scholar 

  • 78.

    Nakhavali, M. et al. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geosci. Model Dev. 11, 593–609 (2018).

  • 79.

    Lauerwald, R. et al. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon basin. Geosci. Model Dev. 10, 3821–3859 (2017).

    ADS  CAS  Google Scholar 

  • 80.

    Stubbins, A. et al. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nat. Geosci. 5, 198–201 (2012).

    ADS  CAS  Google Scholar 

  • 81.

    Ding, Y., Yamashita, Y., Jones, J. & Jaffé, R. Dissolved black carbon in boreal forest and glacial rivers of central Alaska: assessment of biomass burning versus anthropogenic sources. Biogeochemistry 123, 15–25 (2015).

    CAS  Google Scholar 

  • 82.

    Ding, Y., Cawley, K. M., da Cunha, C. N. & Jaffé, R. Environmental dynamics of dissolved black carbon in wetlands. Biogeochemistry 119, 259–273 (2014).

    CAS  Google Scholar 

  • 83.

    Dittmar, T. The molecular level determination of black carbon in marine dissolved organic matter. Org. Geochem. 39, 396–407 (2008).

    CAS  Google Scholar 

  • 84.

    Hammes, K. et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob. Biogeochem. Cycles 21, 1–18 (2007).

    ADS  Google Scholar 

  • 85.

    Zimmerman, A. R. & Mitra, S. Trial by fire: on the terminology and methods used in pyrogenic organic carbon research. Front. Earth Sci. 5, 95 (2017).

    ADS  Google Scholar 

  • 86.

    Abiven, S., Hengartner, P., Schneider, M. P. W., Singh, N. & Schmidt, M. W. I. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol. Biochem. 43, 1615–1617 (2011).

    CAS  Google Scholar 

  • 87.

    Wiedemeier, D. B. et al. Aromaticity and degree of aromatic condensation of char. Org. Geochem. 78, 135–143 (2015).

    CAS  Google Scholar 

  • 88.

    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58, 403–414 (2008).

    Google Scholar 

  • 89.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Study: Reflecting sunlight to cool the planet will cause other global changes

    Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology