in

Fueling of a marine-terrestrial ecosystem by a major seabird colony

  • 1.

    Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science  309, 445 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Qin, X. et al. From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica. Chin. J. Oceanol. Limnol. 32, 148–154 (2014).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2010).

    Article  Google Scholar 

  • 4.

    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. 113, 868–873 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Macavoy, S. E., Garman, G. C. & Macko, S. A. Anadromous fish as marine nutrient vectors. Fish. Bull. 107, 165–174 (2009).

    Google Scholar 

  • 6.

    Michelutti, N. et al. Seabird-driven shifts in Arctic pond ecosystems. Proc. R. Soc. B Biol. Sci. 276, 591–596 (2009).

    Article  Google Scholar 

  • 7.

    Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

  • 8.

    Ellis, J. R., Fariña, J. M. & Witman, J. D. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Kolb, G. S., Ekholm, J. & Hambäck, P. A. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).

    ADS  Article  Google Scholar 

  • 10.

    Anderson, W. & Polis, G. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).

    ADS  PubMed  Article  Google Scholar 

  • 11.

    Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36, 363–372 (2013).

    Article  Google Scholar 

  • 12.

    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems https://doi.org/10.1007/s10021-020-00494-8 (2020).

    Article  Google Scholar 

  • 13.

    Kolb, G. S., Jerling, L. & Hambäck, P. A. The impact of cormorants on plant-arthropod food webs on their nesting Islands. Ecosystems 13, 353–366 (2010).

    CAS  Article  Google Scholar 

  • 14.

    Christie, K. S., Hocking, M. D. & Reimchen, T. E. Tracing salmon nutrients in riparian food webs: isotopic evidence in a ground-foraging passerine. Can. J. Zool. 86, 1317–1323 (2008).

    CAS  Article  Google Scholar 

  • 15.

    Maron, J. L. et al. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr. 76, 3–24 (2006).

    Article  Google Scholar 

  • 16.

    Wainright, S. C., Haney, J. C., Kerr, C., Golovkin, A. N. & Flint, M. V. Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska. Mar. Biol. 131, 63–71 (1998).

    CAS  Article  Google Scholar 

  • 17.

    Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Gagnon, K., Rothäusler, E., Syrjänen, A., Yli-Renko, M. & Jormalainen, V. Seabird guano fertilizes Baltic Sea littoral food webs. PLoS ONE 8, e61284 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Gustafsson, B. et al. Reconstructing the development of Baltic sea eutrophication 1850–2006. Ambio 41, 534–548 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Cross, A. D. P., Hentati-Sundberg, J., Österblom, H., McGill, R. A. R. & Furness, R. W. Isotopic analysis of island House Martins Delichon urbica indicates marine provenance of nutrients. Ibis 156, 676–681 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Armitage, P. D., Cranston, P. S. & Pinder, L. C. V. The Chironomidae. Biology and Ecology of Non-biting Midges (Springer, New York, 1995).

    Google Scholar 

  • 23.

    Olsson, O. & Hentati-Sundberg, J. Population trends and status of four seabird species (Uria aalge, Alca torda, Larus fuscus, Larus argentatus) at Stora Karlsö in the Baltic Sea. Ornis Svecica 27, 64–93 (2017).

    Article  Google Scholar 

  • 24.

    Hentati-Sundberg, J. et al. Fish and seabird spatial distribution and abundance around the largest seabird colony in the baltic sea. Mar. Ornithol. 46, 61–68 (2018).

    Google Scholar 

  • 25.

    Hentati-Sundberg, J., Österblom, H., Kadin, M., Jansson, Å & Olsson, O. The Karlsö Murre lab methodology can stimulate innovative seabird research. Mar. Ornithol. 40, 11–16 (2012).

    Google Scholar 

  • 26.

    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).

    Article  Google Scholar 

  • 27.

    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis. Wiley, Hoboken. https://doi.org/10.1016/0043-1354(85)90057-0 (2009).

    Article  Google Scholar 

  • 28.

    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Iversen, N. & Jørgensen, B. B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Cosmochim. Acta 57, 571–578 (1993).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Berglund, P. A. Evaluating ten years of ecological seabird research in the Baltic Sea. (MSc thesis, Stockholm University, 2016).

  • 31.

    Brekke, B. & Gabrielsen, G. W. Assimilation efficiency of adult Kittiwakes and Brünnich’s Guillemots fed Capelin and Arctic Cod. Polar Biol. 14, 279–284 (1994).

    Article  Google Scholar 

  • 32.

    HELCOM. Sources and pathways of nutrients to the Baltic Sea. Balt. Sea Environ. Proc. 153, 48 (2018).

    Google Scholar 

  • 33.

    Lescroël, A. et al. Seeing the ocean through the eyes of seabirds: a new path for marine conservation?. Mar. Policy 68, 212–220 (2016).

    Article  Google Scholar 

  • 34.

    Yorio, P. Marine protected areas, spatial scales, and governance: implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).

    Article  Google Scholar 

  • 35.

    Länsstyrelsen Gotlands Län. Bevarandeplan för Natura 2000-området SE0340023 Stora Karlsö. (2018).

  • 36.

    Pinder, L. C. V. Biology of freshwater chironomidae. Annu. Rev. Entomol. 31, 1–23 (1986).

    Article  Google Scholar 

  • 37.

    Hirvenoja, M., Palmén, E. & Hirvenoja, E. The emergence of Halocladius variabilis (Staeger) (Diptera: Chironomidae) in the surroundings of the Tvärminne Biological Station in the northern Baltic Sea. Entomol. Fenn. 17, 87–89 (2006).

    Article  Google Scholar 

  • 38.

    Voss, M., Larsen, B., Leivuori, M. & Vallius, H. Stable isotope signals of eutrophication in Baltic Sea sediments. J. Mar. Syst. 25, 287–298 (2000).

    Article  Google Scholar 

  • 39.

    Deutsch, B., Alling, V., Humborg, C., Korth, F. & Mörth, C. M. Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem. Biogeosciences 9, 4465–4475 (2012).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Griffiths, J. R. et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23, 2179–2196 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K. & Brchert, V. Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns. Biogeochemistry 119, 139–160 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Bianchi, T. S. et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?. Limnol. Oceanogr. 45, 716–726 (2000).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Gunnars, A. & Blomqvist, S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions: an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37, 203–226 (1997).

    CAS  Article  Google Scholar 

  • 44.

    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evol. 28, 396–401 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Mackin, J. E. & Aller, R. C. Ammonium adsorption in marine sediments. Limnol. Oceanogr. 29, 250–257 (1984).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Carstensen, J., Andersen, J. H., Gustafsson, B. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. 111, 5628–5633 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Cleary, D. M., Onac, B. P., Forray, F. L. & Wynn, J. G. Effect of diet, anthropogenic activity, and climate on δ15N values of cave bat guano. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461, 87–97 (2016).

    Article  Google Scholar 

  • 48.

    Vahtera, E. et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36, 186–194 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China