in

Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment

  • 1.

    Cragg, S. M. et al. Lignocellulose degradation mechanisms across the tree of Life. Curr. Opin. Chem. Bio. 29, 108–119. https://doi.org/10.1016/j.cbpa.2015.10.018 (2015).

    Article  CAS  Google Scholar 

  • 2.

    Sticklen, M. B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet. 9, 433–443. https://doi.org/10.1038/nrg2336 (2008).

    Article  PubMed  CAS  Google Scholar 

  • 3.

    Guerriero, G., Hausman, J., Strauss, J., Ertan, H. & Siddiqui, K. S. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16, 1–16. https://doi.org/10.1002/elsc.201400196 (2016).

    Article  CAS  Google Scholar 

  • 4.

    Morrison, M., Pope, P. B., Denman, S. E. & McSweeney, C. S. Plant biomass degradation by gut microbiomes: more of the same or something new?. Curr. Opin. Biotechnol. 20, 358–363. https://doi.org/10.1016/j.copbio.2009.05.004 (2009).

    Article  PubMed  CAS  Google Scholar 

  • 5.

    Karasov, W. H., del Rio, C. M. & Caviedes-Vidal, E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 73, 69–93. https://doi.org/10.1146/annurev-physiol-012110-142152 (2011).

    Article  PubMed  CAS  Google Scholar 

  • 6.

    Engel, P. & Moran, N. A. The gut microbiota of insects — diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735. https://doi.org/10.1111/1574-6976.12025 (2013).

    Article  PubMed  CAS  Google Scholar 

  • 7.

    Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496. https://doi.org/10.1111/mec.12421 (2013).

    Article  PubMed  Google Scholar 

  • 8.

    Kohl, K. D., Connelly, J. W., Dearing, M. D. & Forbey, J. S. Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol.Lett. 363, fnw144. https://doi.org/10.1093/femsle/fnw144 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 9.

    Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L. & Schultz, T. R. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36, 563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626 (2005).

    Article  Google Scholar 

  • 10.

    Mayhé-Nunes, A. J. & Jaffé, K. On the biogeography of Attini (Hymenoptera: Formicidae). Ecotropicos 11, 45–54 (1998).

    Google Scholar 

  • 11.

    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81. https://doi.org/10.1111/syen.12090 (2015).

    Article  Google Scholar 

  • 12.

    Jordal, B. H. & Cognato, C. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol. Biol. 12, 133. https://doi.org/10.1186/1471-2148-12-133 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 13.

    Nobre, T., Rouland-Lefevre, C. & Aanen, D. K. Comparative biology of fungus cultivation in termites and ants. In Biology of termites: a modern synthesis, Chapter 8, 193–210 (eds Bignell, D. E. et al.) (Springer, Berlin, 2011).

    Google Scholar 

  • 14.

    Aylward, F. O. et al. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl. Environ. Microbiol. 79, 3770–3778. https://doi.org/10.1128/AEM.03833-12 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 15.

    Khadempour, L. et al. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates. Mol. Ecol. 25, 5795–5805. https://doi.org/10.1111/mec.13872 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 16.

    Vigueras, G. et al. Growth and enzymatic activity of Leucoagaricus gongylophorus, a mutualistic fungus isolated from the leaf-cutting ant Atta mexicana, on cellulose and lignocellulosic biomass. Lett. Appl. Microbiol. 65, 173–181. https://doi.org/10.1111/lam.12759 (2017).

    Article  PubMed  CAS  Google Scholar 

  • 17.

    Poulsen, M. et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl. Acad. Sci. USA 111, 14500–14505. https://doi.org/10.1073/pnas.1319718111 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 18.

    Hyodo, F., Inoue, T., Azuma, J. I., Tayasu, I. & Abe, T. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol. Biochem. 32, 653–658. https://doi.org/10.1016/S0038-0717(99)00192-3 (2000).

    Article  CAS  Google Scholar 

  • 19.

    Hyodo, F. et al. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol. 17, 186–193. https://doi.org/10.1046/j.1365-2435.2003.00718.x (2003).

    Article  Google Scholar 

  • 20.

    De Fine Lich, H. H. & Biedermann, P. H. W. Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front. Zool. 9, 13. https://doi.org/10.1186/1742-9994-9-13 (2012).

    Article  CAS  Google Scholar 

  • 21.

    Lange, L. & Grell, M. N. The prominent role of fungi and fungal enzymes in the ant–fungus biomass conversion symbiosis. Appl. Microbiol. Biotechnol. 98, 4839–4851. https://doi.org/10.1007/s00253-014-5708-5 (2014).

    Article  PubMed  CAS  Google Scholar 

  • 22.

    Collins, N. M. The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 51, 389–399. https://doi.org/10.1007/BF00540911 (1981).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 23.

    Beaver, R. A. Insect-fungus relationships in the bark and ambrosia beetles. In Insect-fungus interactions (eds Wilding, N. et al.) 121–143 (Academic Press, Cambridge, 1989).

    Google Scholar 

  • 24.

    Kok, L. T., Norrisd, M. & Chu, H. M. Sterol metabolism as a basis for mutualistic symbiosis. Nature 225, 661–662. https://doi.org/10.1038/225661b0 (1970).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 25.

    Six, D. L. Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 3, 339–366. https://doi.org/10.3390/insects3010339 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123. https://doi.org/10.1126/science.1173036 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 27.

    Suen, G. et al. An insect herbivore microbiome with high plant biomass degrading capacity. PLoS Genet. 6, e1001129. https://doi.org/10.1371/journal.pgen.1001129 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 28.

    Aylward, F. O. et al. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J. 6, 1688–1701. https://doi.org/10.1038/ismej.2012.10 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 29.

    Haanstad, J. O. & Norris, D. M. Microbial symbiotes of the ambrosia beetle Xyletorinus politus. Microb. Ecol. 11, 267–276. https://doi.org/10.1007/BF02010605 (1985).

    Article  PubMed  CAS  Google Scholar 

  • 30.

    Grubbs, K. J. et al. Genome sequence of Streptomyces griseus  strain XyelbKG-1, an ambrosia beetle associated actinomycete. J. Bacteriol. 193, 2890–2891. https://doi.org/10.1128/JB.00330-11 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 31.

    Scott, J. J. et al. Bacterial protection of beetle-fungus mutualism. Science 322, 63. https://doi.org/10.1126/science.1160423 (2008).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 32.

    Boone, C. K. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 39, 1003–1006. https://doi.org/10.1007/s10886-013-0313-0 (2013).

    Article  PubMed  CAS  Google Scholar 

  • 33.

    Xu, L.-T., Lu, M. & Sun, J.-H. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 23, 183–190. https://doi.org/10.1111/1744-7917.12255 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 34.

    Um, S., Fraimout, A., Sapountzis, P., Oh, D.-C. & Poulsen, M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci. Rep. 3, 3250. https://doi.org/10.1038/srep03250 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Li, H. et al. Lignocellulose pretreatment in a fungus-cultivating termite. Proc. Natl. Acad. Sci. USA 114, 4709–4714. https://doi.org/10.1073/pnas.1618360114 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 36.

    Aylward, F. O. et al. Convergent bacterial microbiotas in the fungal agricultural systems of insects. mBio 5, e02077-14. https://doi.org/10.1128/mBio.02077-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153. https://doi.org/10.1111/evo.12729 (2015).

    Article  PubMed  Google Scholar 

  • 38.

    Arbuckle, K. & Speed, M. P. Analysing convergent evolution: a practical guide to methods. In Evolutionary biology: convergent evolution, evolution of complex traits, concepts and methods, Chapter 2, (ed. Pontarotti, P.) 23–36 (Springer, Berlin , 2016).

    Google Scholar 

  • 39.

    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, 9323. https://doi.org/10.1126/science.aac9323 (2015).

    ADS  Article  CAS  Google Scholar 

  • 40.

    Rabeling, C., Verhaagh, M. & Engels, W. Comparative study of nest architecture and colony structure of the fungus-growing ants, Mycocepurus goeldii and M. smithii. J. Insect. Sci. 7, 40. https://doi.org/10.1673/031.007.4001 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 41.

    Zanetti, R. et al. An overview of integrated management of leaf-cutting ants (Hymenoptera: Formicidae) in Brazilian forest plantations. Forests 5, 439–454. https://doi.org/10.3390/f5030439 (2014).

    Article  Google Scholar 

  • 42.

    Markowitz, V. M. et al. IMG/M-HMP: a metagenome comparative analysis system for the human microbiome project. PLoS ONE 7, e40151. https://doi.org/10.1371/journal.pone.0040151 (2012).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 43.

    Adams, A. S. et al. Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79, 3468–3475. https://doi.org/10.1128/AEM.00068-13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 44.

    Solheim, H. Oxygen deficiency and spruce resin inhibition of growth of blue stain fungi associated with Ips typographus. Mycol. Res. 95, 1387–1392. https://doi.org/10.1016/S0953-7562(09)80390-0 (1991).

    Article  Google Scholar 

  • 45.

    Schuurman, G. H. Ecosystem influences of fungus-growing termites in the dry Paleotropics. In Soil ecology and ecosystem services, Chapter 34 (eds Wall, D. H. et al.) 173–188 (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 46.

    Somera, A. F., Lima, A. M., Santos-Neto, A. J., Lanças, F. M. & Bacci, M. Jr. Leaf-cutter ant fungus gardens are biphasic mixed microbial bioreactors that convert plant biomass to polyols with biotechnological applications. Appl. Environ. Microbiol. 81, 4525–4535. https://doi.org/10.1128/AEM.00046-15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 47.

    Ballard, R. W., Palleroni, N. J., Doudoroff, M., Stanier, R. Y. & Mandel, M. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J. Gen. Microbiol. 60, 199–214. https://doi.org/10.1099/00221287-60-2-199 (1970).

    Article  PubMed  CAS  Google Scholar 

  • 48.

    O’Hara, C. M. Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative Bacilli. Clin. Microbiol. Rev. 18, 147–162. https://doi.org/10.1128/CMR.18.1.147-162.2005 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 49.

    Brune, A., Miambi, E. & Breznak, J. A. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol. 61, 2688–2695 (1995).

    Article  CAS  Google Scholar 

  • 50.

    White, B. A., Lamed, R., Bayer, E. A. & Flint, H. J. Biomass utilization by gut microbiomes. Annu. Rev. Microbiol. 68, 279–296. https://doi.org/10.1146/annurev-micro-092412-155618 (2014).

    Article  PubMed  CAS  Google Scholar 

  • 51.

    de Vos, W. Microbial biofilms and the human intestinal microbiome. npj Biofilms Microbio. 1, 15005. https://doi.org/10.1038/npjbiofilms.2015.5 (2015).

    Article  CAS  Google Scholar 

  • 52.

    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 53.

    Leng, R. A. Biofilm compartmentalisation of the rumen microbiome: modification of fermentation and degradation of dietary toxins. Anim. Prod. Sci. 57, 2188–2203. https://doi.org/10.1071/AN17382 (2017).

    Article  CAS  Google Scholar 

  • 54.

    Kohl, K. D. et al. Metagenomic sequencing provides insights into microbial detoxification in the guts of small mammalian herbivores (Neotoma spp.). FEMS Microbiol. Ecol. 94, fiy184. https://doi.org/10.1093/femsec/fiy184 (2018).

    Article  CAS  Google Scholar 

  • 55.

    Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl. Acad. Sci USA 108, 14288–14293. https://doi.org/10.1073/pnas.1101591108 (2011).

    ADS  Article  Google Scholar 

  • 56.

    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277. https://doi.org/10.1126/science.aaf4507 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 57.

    Louca, S. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943. https://doi.org/10.1038/s41559-018-0519-1 (2018).

    Article  PubMed  Google Scholar 

  • 58.

    Jurburg, S. D. & Salles, J. F. Functional redundancy and ecosystem function—the soil microbiota as a case study. In Biodiversity in ecosystems—linking structure and function (eds Lo, Y.-H. et al.) 29–49 (INTECH, New York, 2015).

    Google Scholar 

  • 59.

    Grell, M. N. et al. The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides. BMC Genomics 14, 928. https://doi.org/10.1186/1471-2164-14-928 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 60.

    Žifčáková, L. et al. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5, 122. https://doi.org/10.1186/s40168-017-0340-0 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Jing, T., Qi, F. & Wang, Z. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 8, 38. https://doi.org/10.1186/s40168-020-00823-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Howard, J. J., Cazin, J. & Wiemer, D. F. Toxicity of terpenoid deterrents to the leafcutting ant Atta cephalotes and its mutualistic fungus. J. Chem. Ecol. 14, 59–69. https://doi.org/10.1007/BF01022531 (1988).

    Article  PubMed  CAS  Google Scholar 

  • 63.

    Keeling, C. I. & Bohlmann, J. Diterpene resin acids in conifers. Phytochemistry 67, 2415–2423. https://doi.org/10.1016/j.phytochem.2006.08.019 (2006).

    Article  PubMed  CAS  Google Scholar 

  • 64.

    Zhu, L. et al. Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. MSphere 3, e00229-18. https://doi.org/10.1128/mSphere.00229-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Cheng, X. et al. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Sci. Rep. 3, 1869. https://doi.org/10.1038/srep01869 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 66.

    Flemming, H. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575. https://doi.org/10.1038/nrmicro.2016.94 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 67.

    Sivadon, P., Barnier, C., Urios, L. & Grimaud, R. Biofilm formation as a microbial strategy to assimilate particulate substrates. Environ. Microbiol. Rep. 11, 749–764. https://doi.org/10.1111/1758-2229.12785 (2019).

    Article  PubMed  CAS  Google Scholar 

  • 68.

    Brethauer, S., Shahab, R. L. & Studer, M. H. Impacts of biofilms on the conversion of cellulose. Appl. Microbiol. Biotechnol. 104, 5201–5212. https://doi.org/10.1007/s00253-020-10595-y (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 69.

    Macfarlane, S. & Macfarlane, G. T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl. Environ. Microbiol. 72, 6204–6211. https://doi.org/10.1128/AEM.00754-06 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 70.

    Deveau, A. et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352. https://doi.org/10.1093/femsre/fuy008 (2018).

    Article  PubMed  CAS  Google Scholar 

  • 71.

    Purahong, W. et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 25, 4059–4074. https://doi.org/10.1111/mec.13739 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 72.

    Frey-Klett, P. et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 583–609. https://doi.org/10.1128/MMBR.00020-11 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 73.

    Martin, M. M. Biochemical implications of insect mycophagy. Biol. Rev. 54, 1–21. https://doi.org/10.1111/j.1469-185X.1979.tb00865.x (1979).

    Article  CAS  Google Scholar 

  • 74.

    Brabcová, V., Nováková, M., Davidová, A. & Baldrian, P. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 210, 1369–1381. https://doi.org/10.1111/nph.13849 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 75.

    Brabcová, V., Štursová, M. & Baldrian, P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118, 187–198. https://doi.org/10.1016/j.soilbio.2017.12.012 (2018).

    Article  CAS  Google Scholar 

  • 76.

    de Boer, W. D., Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811. https://doi.org/10.1016/j.femsre.2004.11.005 (2005).

    Article  PubMed  CAS  Google Scholar 

  • 77.

    Leveau, J. H. & Preston, G. M. Bacterial mycophagy: definition and diagnosis of a unique bacterial–fungal interaction. New Phytol. 177, 859–876. https://doi.org/10.1111/j.1469-8137.2007.02325.x (2008).

    Article  PubMed  Google Scholar 

  • 78.

    Carrasco, J. & Preston, G. M. Growing edible mushrooms: a conversation between bacteria and fungi. Environ. Microbiol. 22, 858–872. https://doi.org/10.1111/1462-2920.14765 (2020).

    Article  PubMed  Google Scholar 

  • 79.

    Warmink, J. A., Nazir, R. & Van Elsas, J. D. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ. Microbiol. 11, 300–312. https://doi.org/10.1111/j.1462-2920.2008.01767.x (2009).

    Article  PubMed  CAS  Google Scholar 

  • 80.

    Guennoc, C., Rose, C., Labbé, J. & Deveau, A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls?. FEMS Microbiol. Ecol. 94, 093. https://doi.org/10.1093/femsec/fiy093 (2018).

    Article  CAS  Google Scholar 

  • 81.

    Figueiredo, A. R. T. D. & Kramer, J. Cooperation and conflict within the microbiota and their effects on animal hosts. Front. Ecol. Evol. 8, 132. https://doi.org/10.3389/fevo.2020.00132 (2020).

    Article  Google Scholar 

  • 82.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666. https://doi.org/10.1126/science.aad2602 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 83.

    Donaldson, G., Lee, S. & Mazmanian, S. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32. https://doi.org/10.1038/nrmicro3552 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 84.

    Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442. https://doi.org/10.1016/j.chom.2017.03.010 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 85.

    Adair, K. L. & Douglas, A. E. Making a microbiome: the many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 35, 23–29. https://doi.org/10.1016/j.mib.2016.11.002 (2017).

    Article  PubMed  Google Scholar 

  • 86.

    Shafquat, A., Joice, R., Simmons, S. & Huttenhower, C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 22, 261–266. https://doi.org/10.1016/j.tim.2014.01.011 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 87.

    Hernandez-Agreda, A., Gates, R. D. & Ainsworth, T. D. Defining the core microbiome in corals’ microbial soup. Trends Microbiol. 25, 125–140. https://doi.org/10.1016/j.tim.2016.11.003 (2017).

    Article  PubMed  CAS  Google Scholar 

  • 88.

    Ramadhar, T. et al. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. J. Antibiot. 67, 53–58. https://doi.org/10.1038/ja.2013.77 (2014).

    Article  PubMed  CAS  Google Scholar 

  • 89.

    Van Arnam, E. B., Currie, C. R. & Clardy, J. Defense contracts: molecular protection in insect-microbe symbioses. Chem. Soc. Rev. 47, 1638–1651. https://doi.org/10.1039/C7CS00340D (2018).

    Article  PubMed  Google Scholar 

  • 90.

    Berasategui, A. et al. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol. 100, 1567–1577. https://doi.org/10.1007/s00253-015-7186-9 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 91.

    Cox, M. P., Peterson, D. A. & Biggs, P. J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11, 485. https://doi.org/10.1186/1471-2105-11-485 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 92.

    Li, D., Liu, C., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. https://doi.org/10.1093/bioinformatics/btv033 (2015).

    Article  PubMed  CAS  Google Scholar 

  • 93.

    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864. https://doi.org/10.1093/bioinformatics/btr026 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 94.

    Markowitz, V. M. et al. IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res. 42, D568–D573. https://doi.org/10.1093/nar/gkt919 (2014).

    Article  PubMed  CAS  Google Scholar 

  • 95.

    Patil, K. R., Roune, L. & MChardy, A. C. The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS One 7, e38581. https://doi.org/10.1371/journal.pone.0038581 (2012).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 96.

    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl Acad. Sci. USA 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).

    ADS  Article  PubMed  Google Scholar 

  • 97.

    Kešnerová, L., Moritz, R. & Engel, P. Bartonella apis sp. Nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 66, 414–421. https://doi.org/10.1099/ijsem.0.000736 (2016).

    Article  CAS  Google Scholar 

  • 98.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 99.

    Guindon, S. & Gascuel, O. A Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. https://doi.org/10.1080/10635150390235520https://doi.org/10.1080/10635150390235520 (2003).

    Article  PubMed  Google Scholar 

  • 100.

    Hammer, Ř., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 1. https://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001).

  • 101.

    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. https://doi.org/10.1093/bioinformatics/btu494https://doi.org/10.1093/bioinformatics/btu494 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 102.

    Fan, H., Ives, A. R., Surget-Groba, Y. & Cannon, C. H. An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. BMC Genomics 16, 522. https://doi.org/10.1186/s12864-015-1647-5 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 103.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128. https://doi.org/10.1093/bioinformatics/btl529 (2007).

    Article  PubMed  CAS  Google Scholar 

  • 104.

    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).

    Article  PubMed  CAS  Google Scholar 

  • 105.

    White, J. R. et al. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5, 1000352. https://doi.org/10.1371/journal.pcbi.1000352 (2009).

    Article  CAS  Google Scholar 

  • 106.

    Cantarel, B. L. et al. The carbohydrate-active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238. https://doi.org/10.1093/nar/gkn663 (2009).

    Article  PubMed  CAS  Google Scholar 

  • 107.

    Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101. https://doi.org/10.1093/nar/gky418 (2018).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 108.

    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA & GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731. https://doi.org/10.1016/j.jmb.2015.11.006 (2016).

    Article  PubMed  CAS  Google Scholar 

  • 109.

    Barcoto, M. O. Fungus-growing insects host a convergent microbiome with functional similarities to other lignocellulose-feeding insects. Masters dissertation, São Paulo State University (2017).


  • Source: Ecology - nature.com

    Letter from President Reif: Tackling the grand challenges of climate change

    Novel gas-capture approach advances nuclear fuel management