in

Future climate change vulnerability of endemic island mammals

  • 1.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Işik, K. Rare and endemic species: why are they prone to extinction? Turk. J. Bot. 35, 411–417 (2011).

    Google Scholar 

  • 7.

    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).

    Article  Google Scholar 

  • 8.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).

    ADS  Article  Google Scholar 

  • 9.

    de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).

    Article  Google Scholar 

  • 10.

    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 11.

    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Intergovernmental Panel on Climate Change. Climate change 2007: impacts, adaptation and vulnerability. https://www.ipcc.ch/report/ar4/wg2/ (2007).

  • 13.

    Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Chang. Biol. 16, 1936–1953 (2010).

    ADS  Article  Google Scholar 

  • 14.

    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G. & Pettorelli, N. Natural population die-offs: causes and consequences for terrestrial mammals. Trends Ecol. Evol. 27, 272–277 (2012).

    PubMed  Article  Google Scholar 

  • 15.

    Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 10, e551 (2019).

    Article  Google Scholar 

  • 16.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article  Google Scholar 

  • 17.

    Garcia, R. A., Burgess, N. D., Cabeza, M., Rahbek, C. & Araújo, M. B. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Chang. Biol. 18, 1253–1269 (2012).

    ADS  Article  Google Scholar 

  • 18.

    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Article  Google Scholar 

  • 19.

    Morin, X. & Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301–1313 (2009).

    PubMed  Article  Google Scholar 

  • 20.

    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 367, 1665–1679 (2012).

    Article  Google Scholar 

  • 21.

    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Chang. 4, 217–221 (2014).

    ADS  Article  Google Scholar 

  • 22.

    Hossain, M. A., Kujala, H., Bland, L. M., Burgman, M. & Lahoz-Monfort, J. J. Assessing the impacts of uncertainty in climate-change vulnerability assessments. Divers. Distrib. 25, 1234–1245 (2019).

    Google Scholar 

  • 23.

    Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).

    PubMed  Article  Google Scholar 

  • 24.

    Li, D., Wu, S., Liu, L., Zhang, Y. & Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 24, 4095–4106 (2018).

    ADS  PubMed  Article  Google Scholar 

  • 25.

    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531 (2018).

    ADS  PubMed  Article  Google Scholar 

  • 26.

    Moilanen, A., Wilson, K. A. & Possingham, H. P. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford University Press, 2009).

  • 27.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Rondinini, C., Rodrigues, A. S. L. & Boitani, L. The key elements of a comprehensive global mammal conservation strategy. Philos. Trans. R. Soc. B Biol. Sci. 366, 2591–2597 (2011).

    Article  Google Scholar 

  • 29.

    Leclerc, C., Courchamp, F. & Bellard, C. Insular threat associations within taxa worldwide. Sci. Rep. 8, 6393 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Pacifici, M., Visconti, P. & Rondinini, C. A framework for the identification of hotspots of climate change risk for mammals. Glob. Chang. Biol. 24, 1626–1636 (2018).

    ADS  PubMed  Article  Google Scholar 

  • 31.

    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4, 6898 (2015).

    Article  CAS  Google Scholar 

  • 32.

    González-Suárez, M., Gómez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, art76 (2013).

    Article  Google Scholar 

  • 33.

    Pimm, S., Raven, P., Peterson, A., Şekercioǧlu, Ç. H. & Ehrlich, P. R. Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl Acad. Sci. USA 103, 10941–10946 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    Jansson, R. Extinction risks from climate change: macroecological and historical insights. F1000 Biol. Rep. 1, 44 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Ferreira, M. T. et al. Implications of climate change to the design of protected areas: the case study of small islands (Azores). PLoS ONE 14, e0218168 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Divers. Distrib. 22, 625–637 (2016).

    Article  Google Scholar 

  • 38.

    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).

    Article  Google Scholar 

  • 39.

    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).

    ADS  Article  Google Scholar 

  • 40.

    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    PubMed  Article  Google Scholar 

  • 41.

    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).

    PubMed  Article  Google Scholar 

  • 42.

    Morrison, L., Estrada, A. & Early, R. Species traits suggest European mammals facing the greatest climate change are also least able to colonize new locations. Divers. Distrib. 24, 1321–1332 (2018).

    Article  Google Scholar 

  • 43.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 44.

    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, Oxford, 2007).

  • 45.

    Wheatley, C. J. et al. Climate change vulnerability for species—assessing the assessments. Glob. Chang. Biol. 23, 3704–3715 (2017).

    ADS  PubMed  Article  Google Scholar 

  • 46.

    Butt, N. et al. Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biol. Conserv. 199, 10–15 (2016).

    Article  Google Scholar 

  • 47.

    Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 12979 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).

    ADS  Article  Google Scholar 

  • 49.

    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).

    PubMed  Article  Google Scholar 

  • 50.

    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212 (2014).

    Article  Google Scholar 

  • 51.

    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G., Cornforth, W. A. & Pettorelli, N. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett. 6, 145–153 (2013).

    Article  Google Scholar 

  • 52.

    Maxwell, S. L., Venter, O., Jones, K. R. & Watson, J. E. M. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann. NY Acad. Sci. 1355, 98–116 (2015).

    ADS  PubMed  Article  Google Scholar 

  • 53.

    Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).

    ADS  Article  Google Scholar 

  • 54.

    IUCN. The IUCN red list of threatened species (version 2018-2). http://www.iucnredlist.org (2018).

  • 55.

    Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. USA 110, 15307–11532 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 57.

    Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).

    Article  Google Scholar 

  • 58.

    Veloz, S. D. et al. No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Glob. Chang. Biol. 18, 1698–1713 (2012).

    ADS  Article  Google Scholar 

  • 59.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 60.

    Intergovernmental Panel on Climate Change. Climate change 2013: the physical science basis. https://www.ipcc.ch/report/ar5/wg1/ (2013).

  • 61.

    Veloz, S. et al. Identifying climatic analogs for Wisconsin under 21st-century climate-change scenarios. Clim. Change 112, 1037–1058 (2012).

    ADS  Article  Google Scholar 

  • 62.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article  Google Scholar 

  • 63.

    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).

    Article  Google Scholar 

  • 64.

    Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).

    Article  Google Scholar 

  • 65.

    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 66.

    Mazaris, A. D. et al. Evaluating the connectivity of a protected areas’ network under the prism of global change: the efficiency of the European Natura 2000 Network for four birds of prey. PLoS ONE 8, e59640 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the edge: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).

    PubMed  Article  Google Scholar 

  • 69.

    Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28, 199–204 (2013).

    PubMed  Article  Google Scholar 

  • 70.

    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).

  • 71.

    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 73.

    Allan, J. D. et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc. Natl Acad. Sci. USA 110, 372–377 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 74.

    Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).

    Article  Google Scholar 

  • 75.

    Hwang, C.-L. & Yoon, K. Multiple Attribute Decision Making: Methods and Applications, Vol. 186 (Springer-Verlag, New York, 1981).

  • 76.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008).


  • Source: Ecology - nature.com

    Antarctic sea ice may not cap carbon emissions as much as previously thought

    A champion of renewable energy