in

Gene amplification as a form of population-level gene expression regulation

  • 1.

    Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994).

  • 2.

    Savageau, M. A. Genetic regulatory mechanisms and the ecological niche of Escherichia coli. Proc. Natl Acad. Sci. USA. 71, 2453–2455 (1974).

  • 3.

    Gerland, U. & Hwa, T. Evolutionary selection between alternative modes of gene regulation. Proc. Natl Acad. Sci. USA 106, 8841–8846 (2009).

  • 4.

    Tuğrul, M., Paixão, T., Barton, N. H. & Tkačik, G. Dynamics of transcription factor binding site evolution. PLoS Genet. 11, e1005639 (2015).

  • 5.

    Berg, J., Willmann, S. & Lässig, M. Adaptive evolution of transcription factor binding sites. BMC Evol. Biol. 4, 42 (2004).

  • 6.

    Anderson, P. & Roth, J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc. Natl Acad. Sci. USA 78, 3113–3117 (1981).

  • 7.

    Reams, A. B., Kofoid, E., Savageau, M. & Roth, J. R. Duplication frequency in a population of Salmonella enterica rapidly approaches steady state with or without recombination. Genetics 184, 1077–1094 (2010).

  • 8.

    Pettersson, M. E., Sun, S., Andersson, D. I. & Berg, O. G. Evolution of new gene functions: simulation and analysis of the amplification model. Genetica 135, 309–324 (2009).

  • 9.

    Sun, S., Ke, R., Hughes, D., Nilsson, M. & Andersson, D. I. Genome-wide detection of spontaneous chromosomal rearrangements in bacteria. PLoS ONE 7, e42639 (2012).

  • 10.

    Roth, J. R. et al. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 2256–2276 (American Society for Microbiology, 1996).

  • 11.

    Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol. 4, 504–514 (2019).

  • 12.

    Bass, C. & Field, L. M. Gene amplification and insecticide resistance. Pest Manag. Sci. 67, 886–890 (2011).

  • 13.

    Albertson, D. G. Gene amplification in cancer. Trends Genet. 22, 447–455 (2006).

  • 14.

    Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

  • 15.

    Hjort, K., Nicoloff, H. & Andersson, D. I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol. Microbiol. 102, 274–289 (2016).

  • 16.

    Näsvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338, 384–387 (2012).

  • 17.

    Elde, N. C. et al. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150, 831–841 (2012).

  • 18.

    Kussell, E. & Laibler. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

  • 19.

    Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

  • 20.

    Barkan, D., Stallings, C. L. & Glickman, M. S. An improved counterselectable marker system for mycobacterial recombination using galK and 2-deoxy-galactose. Gene 470, 31–36 (2011).

  • 21.

    Steinrueck, M. & Guet, C. C. Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. eLife 6, e25100 (2017).

  • 22.

    Bergmiller, T. et al. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Science 356, 311–315 (2017).

  • 23.

    Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

  • 24.

    Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7, a016592 (2015).

  • 25.

    Tawfik, D. S. Messy biology and the origins of evolutionary innovations. Nat. Chem. Biol. 6, 692–696 (2010).

    • PubMed
    • Google Scholar
  • 26.

    Jacob, F. Evolution and tinkering. Science 196, 4295 (1977).

    • Google Scholar
  • 27.

    Troein, C., Ahrén, D., Krogh, M. & Peterson, C. Is transcriptional regulation of metabolic pathways an optimal strategy for fitness? PLoS ONE 2, e855 (2007).

  • 28.

    Wolf, L., Silander, O. K. & van Nimwegen, E. Expression noise facilitates the evolution of gene regulation. eLife 4, e05856 (2015).

    • PubMed Central
    • Google Scholar
  • 29.

    Anderson, R. P. & Roth, J. R. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31, 473–505 (1977).

  • 30.

    Taylor, T. B. et al. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science 347, 1014–1017 (2015).

  • 31.

    Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).

  • 32.

    Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

  • 33.

    Gil, R., Sabater-Muñoz, B., Perez-Brocal, V., Silva, F. J. & Latorre, A. Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A puzzling evolutionary story. Gene 370, 17–25 (2006).

  • 34.

    Latorre, A., Gil, R., Silva, F. J. & Moya, A. Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola. Heredity 95, 339–347 (2005).

  • 35.

    Lercher, M. J. & Pál, C. Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol. Biol. Evol. 25, 559–567 (2008).

  • 36.

    Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).

    • PubMed
    • Google Scholar
  • 37.

    Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424 (2004).

  • 38.

    Juhas, M. et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33, 376–393 (2009).

  • 39.

    Pettersson, M. E., Andersson, D. I., Roth, J. R. & Berg, O. G. The amplification model for adaptive mutation. Genetics 169, 1105–1115 (2005).

  • 40.

    Gusev, O. et al. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat. Commun. 5, 4784 (2014).

  • 41.

    Hooper, S. D. & Berg, O. G. Duplication is more common among laterally transferred genes than among indigenous genes. Genome Biol. 4, R48 (2003).

  • 42.

    Eme, L., Gentekaki, E., Curtis, B., Archibald, J. M. & Roger, A. J. Lateral gene transfer in the adaptation of the anaerobic parasite blastocystis to the gut. Curr. Biol. 27, 807–820 (2017).

  • 43.

    Nguyen, T. N., Phan, Q. G., Duong, L. P., Bertrand, K. P. & Lenski, R. E. Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of Escherichia coli K12. Mol. Biol. Evol. 6, 213–225 (1989).

  • 44.

    Gladman, S. L. et al. Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus. Microb. Genomics 1, e000026 (2015).

    • Google Scholar
  • 45.

    Elliott, K. T., Cuff, L. E. & Neidle, E. L. Copy number change: evolving views on gene amplification. Future Microbiol. 8, 887–899 (2013).

  • 46.

    Eydallin, G., Ryall, B., Maharjan, R. & Ferenci, T. The nature of laboratory domestication changes in freshly isolated Escherichia coli strains. Environ. Microbiol. 16, 813–828 (2014).

  • 47.

    Greenblum, S., Carr, R. & Borenstein, E. Extensive strain-level copy-number variation across human gut microbiome species. Cell 160, 583–594 (2015).

  • 48.

    Dhar, R., Bergmiller, T. & Wagner, A. Increased gene dosage plays a predominant role in the initial stages of evolution of duplicate TEM-1 beta lactamase genes. Evolution 68, 1775–1791 (2014).

  • 49.

    Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).

  • 50.

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

  • 51.

    Khlebnikov, A., Datsenko, K. A., Skaug, T., Wanner, B. L. & Keasling, J. D. Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).

  • 52.

    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

  • 53.

    Nagelkerke, F. & Postma, P. W. 2-Deoxygalactose, a specific substrate of the Salmonella typhimurium galactose permease: its use for the isolation of galP mutants. J. Bacteriol. 133, 607–613 (1978).

  • 54.

    Zhou, L. et al. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Microb. Cell Fact. 16, 84 (2017).

  • 55.

    Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

  • 56.

    Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

  • 57.

    Chait, R., Shrestha, S., Shah, A. K., Michel, J. B. & Kishony, R. A differential drug screen for compounds that select against antibiotic resistance. PLoS ONE 5, e15179 (2010).

  • 58.

    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e (2001).

    • Google Scholar
  • 59.

    Drake, J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl Acad. Sci. USA 88, 7160–7164 (1991).

  • 60.

    Elez, M. et al. Seeing mutations in living cells. Curr. Biol. 20, 1432–1437 (2010).

  • 61.

    Bayliss, C. D. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol. Rev. 33, 504–520 (2009).


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels