in

Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes

  • 1.

    García-Roger, E. M., Carmona, M. J. & Serra, M. Facing adversity: Dormant embryos in rotifers. Biol. Bull. 237, 119–144 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 2.

    Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Reynolds, J. A. & Hand, S. C. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J. Exp. Biol. 212, 2075–2084 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Ricci, C. Dormancy patterns in rotifers. Hydrobiologia 446(447), 1–11 (2001).

    Article  Google Scholar 

  • 5.

    Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B. 280, 20130143 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Alekseev, V. R., De Stasio, B. T., Gilbert, J. J. & Ravera, O. Preface. In Diapause in Aquatic Invertebrates, Theory and Human Use (eds Alekseev, V. R. et al.) xiii–xvi (Springer, New York, 2007).

    Google Scholar 

  • 7.

    Hand, S. C. & Podrabsky, J. E. Bioenergetics of diapause and quiescence in aquatic animals. Thermochim. Acta 349, 31–42 (2000).

    CAS  Article  Google Scholar 

  • 8.

    Ślusarczyk, M., Chlebicki, W., Pijanowska, J. & Radzikowski, J. The role of the refractory period in diapause length determination in a freshwater crustacean. Sci. Rep. 9, 11905 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations of Insects (Oxford University Press, Oxford, 1986).

    Google Scholar 

  • 10.

    Alekseev, V. R., De Stasio, B. T. & Gilbert, J. J. Diapause in Aquatic Invertebrates, Theory and Human Use (Springer, New York, 2012).

    Google Scholar 

  • 11.

    García-Roger, E. M., Carmona, M. J. & Serra, M. Modes, mechanisms and evidence of bet hedging in rotifer diapause traits. Hydrobiologia 796, 223–233 (2017).

    Article  Google Scholar 

  • 12.

    Cohen, D. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 119–129 (1966).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Seger, J. & Brockmann, H. J. What is bet-hedging? In Oxford Surveys in Evolutionary Biology Vol. 4 (eds Harvey, P. H. & Partridge, L.) 182–211 (Oxford University Press, Oxford, 1987).

    Google Scholar 

  • 14.

    Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Simons, A. M. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B Biol. Sci. 278, 1601–1609 (2011).

    Article  Google Scholar 

  • 16.

    Menu, F. & Desouhant, E. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause. Oecologia 132, 167–174 (2002).

    ADS  PubMed  Article  Google Scholar 

  • 17.

    Franch-Gras, L., García-Roger, E. M., Serra, M. & Carmona, M. J. Adaptation in response to environmental unpredictability. Proc. R. Soc. B Biol. Sci. 284, 20170427 (2017).

    Article  CAS  Google Scholar 

  • 18.

    Tarazona, E., García-Roger, E. M. & Carmona, M. J. Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126, 1162–1172 (2017).

    Article  Google Scholar 

  • 19.

    Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

    PubMed  Article  CAS  Google Scholar 

  • 20.

    Tammariello, S. P. & Denlinger, D. L. G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect. Biochem. Mol. Biol. 28, 83–89 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Denekamp, N. Y., Reinhardt, R., Kube, M. & Lubzens, E. Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biol. Repr. 82, 714–724 (2010).

    CAS  Article  Google Scholar 

  • 22.

    Qiu, Z. & MacRae, T. H. A molecular overview of diapause in embryos of the crustacean, Artemia franciscana. In Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 165–188 (Springer, New York, 2010).

    Google Scholar 

  • 23.

    Ziv, T. et al. Dormancy in embryos: Insight from hydrated encysted embryos of an aquatic invertebrate. Mol. Cell. Proteomics 16, 1746–1769 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Roncalli, V. et al. Physiological characterization of the emergence from diapause: A transcriptomics approach. Sci. Rep. 8, 12577 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Rozema, E. et al. Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. Sci. Rep. 9, 8878 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Vanvlasselaer, E. & De Meester, L. An exploratory review on the molecular mechanisms of diapause termination in the waterflea. In Daphnia in Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 189–202 (Springer, New York, 2010).

    Google Scholar 

  • 27.

    Declerck, S. A. J. & Papakostas, S. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia 796, 131–144 (2017).

    Article  Google Scholar 

  • 28.

    Serra, M., García-Roger, E. M., Ortells, R. & Carmona, M. J. Cyclically parthenogenetic rotifers and the theories of population and evolutionary ecology. Limnetica 38, 67–93 (2019).

    Google Scholar 

  • 29.

    García-Roger, E. M., Serra, M. & Carmona, M. J. Bet-hedging in diapausing egg hatching of temporary rotifer populations—A review of models and new insights. Int. Rev. Hydrobiol. 99, 96–106 (2014).

    Article  Google Scholar 

  • 30.

    Ricci, C. & Pagani, M. Desiccation of Panagrolaimus rigidus (Nematoda): Survival, reproduction and the influence on the internal clock. Hydrobiologia 347, 1–13 (1997).

    Article  Google Scholar 

  • 31.

    Gordon, G. & Headrick, D. H. A Dictionary of Entomology (Oxford CABI Publ Series, Oxford, 2001).

    Google Scholar 

  • 32.

    Fan, L., Lin, J., Zhong, Y. & Liu, J. Shotgun proteomic analysis on the diapause and nondiapause eggs of domesticated silkworm Bombyx mori. PLoS ONE 8, e60386 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Schröder, T. Diapause in monogonont rotifers. Hydrobiologia 546, 291–306 (2005).

    Article  Google Scholar 

  • 34.

    Denekamp, N. Y. et al. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10, 108 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Denekamp, N. Y. et al. The expression pattern of dormancy-associated genes in multiple life-history stages in the rotifer Brachionus plicatilis. Hydrobiologia 662, 51–63 (2011).

    CAS  Article  Google Scholar 

  • 36.

    Clark, M. S. et al. Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS ONE 7, e29365 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Waterworth, W. M., Bray, C. M. & West, C. E. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 66, 3549–3558 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Sim, C. & Denlinger, D. L. Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. J. Insect Physiol. 57, 628–634 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Ragland, G. J., Denlinger, D. L. & Hahn, D. A. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Natl. Acad. Sci. USA 107, 14909–14914 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Duceppe, M. O. et al. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Sci. Rep. 7, 3882 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Wise, M. J. & Tunnacliffe, A. POPP the question: What do LEA proteins do?. Trends Plant. Sci. 9, 13–17 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    García-Roger, E. M. & Ortells, R. Trade-offs in rotifer diapausing egg traits: Survival, hatching, and lipid content. Hydrobiologia 805, 339–350 (2018).

    Article  CAS  Google Scholar 

  • 43.

    Hand, S. C., Menze, M. A., Toner, M., Boswell, L. & Moore, D. LEA proteins during water stress: Not just for plants anymore. Annu. Rev. Physiol. 73, 115–134 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Crowe, J. H. et al. The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89–105 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Moore, D. S. & Hand, S. C. Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose. Cryobiology 73, 240–247 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Clegg, J. S. Origin of trehalose and its significance during formation of encysted dormant embryos of Artemia Salina. Comp. Biochem. Physiol. 14, 135–143 (1965).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Caprioli, M. et al. Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comp. Biochem. Physiol. 139, 527–532 (2004).

    Article  CAS  Google Scholar 

  • 48.

    Li, T., Liu, L., Zhang, L. & Liu, N. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci. Rep. 4, 6474 (2015).

    Article  CAS  Google Scholar 

  • 49.

    Hommaa, T. et al. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophys. Res. Comm. 344, 386–393 (2006).

    Article  CAS  Google Scholar 

  • 50.

    Jones, S. J. et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res. 11, 1346–1352 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 15, 2149–2165 (2008).

    Article  CAS  Google Scholar 

  • 52.

    Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R1193–R1211 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Woll, S. C. & Podrabsky, J. E. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. J. Exp. Biol. 220, 2777–2786 (2017).

    PubMed  Article  Google Scholar 

  • 54.

    Yu, C. T. & Hirsh, D. The stimulatory effect of ammonium or potassium ions on the activity of leucyl-tRNA synthetase from Escherichia coli. Biochim. Biophys. Acta 142, 149–154 (1967).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Beck, S. D., Shane, J. L. & Garland, J. A. Ammonium-induced termination of diapause in the European corn borer, Ostrinia nubilalis. J. Insect. Physiol. 15, 945–951 (1969).

    CAS  Article  Google Scholar 

  • 56.

    Birnbaumer, L. Expansion of signal transduction by G proteins. The second 15 years or so: From 3 to 16 alpha subunits plus betagamma dimers. Biochim. Biophys. Acta 1768, 772–793 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Dumont, H., Casier, P., Munuswamy, N. & De Wasche, C. Cyst hatching in Anostraca accelerated by retinoic acid, amplified by calcium ionosphore A23187, and inhibited by calcium-channel blockers. Hydrobiologia 230, 1–7 (1992).

    CAS  Article  Google Scholar 

  • 58.

    Kim, H. J. et al. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar. Genomics 20, 25–31 (2015).

    PubMed  Article  Google Scholar 

  • 59.

    Boschetti, C., Ricci, C., Sotgia, C. & Fascio, U. The development of a bdelloid egg: A contribution after 100 years. Hydrobiologia 546, 323–331 (2005).

    Article  Google Scholar 

  • 60.

    Bonneau, B., Popgeorgiev, N., Prudent, J. & Gillet, G. Cytoskeleton dynamics in early zebrafish development. A matter of phosphorylation?. Bioarchitecture 1, 216–220 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Eno, C., Solanki, B. & Pelegri, F. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 143, 1585–1599 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Cáceres, C. E. & Schwalbach, M. S. How well do laboratory experiments explain field patterns of zooplankton emergence?. Freshw. Biol. 46, 1179–1189 (2001).

    Article  Google Scholar 

  • 63.

    De Stasio, B. T. Diapause in calanoid copepods: Within-clutch hatching patterns. J. Limnol. 63, 26–31 (2004).

    Article  Google Scholar 

  • 64.

    García-Roger, E. M., Carmona, M. J. & Serra, M. Patterns in rotifer diapausing egg banks: Density and viability. J. Exp. Mar. Biol. Ecol. 336, 198–210 (2006).

    Article  Google Scholar 

  • 65.

    Helland, S., Nejstgaard, C., Fyhn, J. J., Egge, J. K. & Båmstedt, U. Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females. Mar. Biol. 143, 297–306 (2003).

    CAS  Article  Google Scholar 

  • 66.

    Skottene, E. et al. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci. Rep. 9, 16686 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 67.

    Tan, Q., Liu, W., Zhu, F., Lei, C. & Wang, X. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci. Rep. 7, 40509 (2016).

    ADS  Article  CAS  Google Scholar 

  • 68.

    Gilbert, J. J. & Schröder, T. Rotifers from diapausing, fertilized eggs: Unique features and emergence. Limnol. Oceanogr. 49, 1341–1354 (2004).

    ADS  Article  Google Scholar 

  • 69.

    Alekseev, V. R., Hwang, J.-S. & Tseng, M.-H. Diapause in aquatic invertebrates: What’s known and what’s next in research and medical application?. J. Mar. Sci. Tech. 14, 269–286 (2006).

    Google Scholar 

  • 70.

    Gilbert, J. J. Timing of diapause in monogonont rotifers. In Mechanisms and Strategies in Diapause in Aquatic Invertebrates. Theory and Human Use (eds Alekseev, V. R. et al.) 11–27 (Springer, New York, 2012).

    Google Scholar 

  • 71.

    Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA 114, 8532–8537 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 72.

    Podrabsky, J. E. & Hand, S. C. Physiological strategies during animal diapause: Lessons from brine shrimp and annual killifish. J. Exp. Biol. 218, 1897–1906 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Zahradka, K. et al. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Gladyshev, E. & Meselson, M. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc. Natl. Acad. Sci. USA 105, 5139–5144 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Kim, R. O. et al. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp. Aquat. Toxicol. 101, 529–539 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Han, J. et al. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus. Aquat Toxicol. 155, 101–109 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Hagiwara, A., Hoshi, N., Kawahara, F., Tominaga, K. & Hirayama, K. Resting eggs of the marine rotifer Brachionus plicatilis Müller: Development and effect of irradiation on hatching. Hydrobiologia 313(314), 223–229 (1995).

    Article  Google Scholar 

  • 78.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 79.

    Pourriot, R. & Snell, T. W. Resting eggs of rotifers. Hydrobiologia 104, 213–224 (1983).

    Article  Google Scholar 

  • 80.

    Altman, N. & Krzywinski, M. Split plot design. Nat. Meth. 12, 165–166 (2015).

    CAS  Article  Google Scholar 

  • 81.

    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. Roy. Stat. Soc. Ser. A 135, 370–384 (1972).

    Article  Google Scholar 

  • 82.

    Cox, D. R. Regression models and life-tables (with discussion). J. R. Statist. Soc. B 34, 187–220 (1972).

    MATH  Google Scholar 

  • 83.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017).

  • 84.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 85.

    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, New York, 2020).

    Google Scholar 

  • 86.

    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Franch-Gras, L. et al. Genomic signatures of local adaptation to the degree of environmental unpredictability in rotifers. Sci. Rep. 8, 16051 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 88.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotech. 28, 511–515 (2010).

    CAS  Article  Google Scholar 

  • 89.

    Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Hoffman, G. E. & Schadt, E. E. VariancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 92.

    Benjamini, Y. & Hochberg, Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 25, 60–83 (2000).

    Article  Google Scholar 

  • 93.

    Gianetto, G. Q. et al. Calibration plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in quantitative experiments. Proteomics 16, 29–32 (2016).

    Article  CAS  Google Scholar 

  • 94.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 95.

    McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nuc. Acids Res. 10, 4288–4297 (2012).

    Article  CAS  Google Scholar 

  • 96.

    Witten, D. Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat. 5, 2493–2518 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  • 97.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 98.

    Sims, D. et al. CGAT: Computational genomics analysis toolkit. Bioinformatics 30, 1290–1291 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 100.

    Alexa, A. & Rahnenführer, J. TopGO: Enrichment analysis for gene ontology. R package version 2.40.0. Bioconductor https://doi.org/10.18129/B9.bioc.topGO (2020).

    Article  Google Scholar 

  • 101.

    Hanson, S. J., Stelzer, C.-P., Welch, D. B. & Logsdon, J. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production. BMC Genomics 14, 412 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance