in

Genetic diversity and population structure in Nothofagus pumilio, a foundation species of Patagonian forests: defining priority conservation areas and management

  • 1.

    Silander, J. A. Temperate Forests. In: Encyclopedia of Biodiversity (Second Edition) (ed. Simon A Levin), 112–227 (Academic Press, 2001).

  • 2.

    Glasser, N. F., Harrison, S., Winchester, V. & Aniya, M. Late pleistocene and holocene palaeoclimate and glacier fluctuations in patagonia. Glob. Planet. Change 43, 79–101 (2004).

    ADS  Article  Google Scholar 

  • 3.

    Markgraf, V. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 102, 53–67 (1993).

    Article  Google Scholar 

  • 4.

    Markgraf, V., McGlone, M. & Hope, G. Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol. Evol. 10(4), 143–147 (1995).

    CAS  Article  Google Scholar 

  • 5.

    Amoroso, M. M., Rodríguez-Catón, M., Villalba, R. & Daniels, L. D. Forest Decline in Northern Patagonia: The Role of Climatic Variability. In: Dendroecology, Ecological Studies (Analysis and Synthesis): volume 231 (ed. Amoroso, M. M.; Daniels, L. D.; Baker, P. J.; Camarero, J. J.), 325–342 (Springer, 2007).

  • 6.

    Rodríguez-Catón, M., Villalba, R., Morales, M. & Srur, A. Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(7), e01390. https://doi.org/10.1002/ecs2.1390 (2016).

    Article  Google Scholar 

  • 7.

    Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2005).

    Article  Google Scholar 

  • 8.

    Rusticucci, M. & Barrucand, M. Observed trends and changes in temperature extremes over Argentina. J. Clim. 17, 4099–4107 (2004).

    ADS  Article  Google Scholar 

  • 9.

    Mundo, I. A. et al. Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 8(9), e01932. https://doi.org/10.1002/ecs2.1932 (2017).

    Article  Google Scholar 

  • 10.

    Mohr-Bell, F. D. Superficies afectadas por incendios en la región bosque Andino Patagónico (BAP) durante los veranos de 2013–2014 y 2014–2015. Patagon. For. 21, 34–41 (2015).

    Google Scholar 

  • 11.

    Veblen, T. T., Hill, R. S. & Read, J. Ecology of Southern Chilean and Argentinean Nothofagus Forests. In: The Ecology and Biogeography of Nothofagus Forests, pp. 293–353 (Yale University, USA, 1996).

  • 12.

    Donoso Zegers, C. Las Especies Arbóreas de los Bosques Templados de Chile y Argentina: Autoecología. 678p (María Cuneo Ediciones, 2006)

  • 13.

    Soliani, C. & Aparicio, A. G. Evidence of genetic determination in the growth habit of Nothofagus pumilio (Poepp. & Endl.) Krasser at the extremes of an elevation gradient. Scand. J. For. Res. 35 (5–6), 211–220 (2020).

  • 14.

    Rusch, V. E. Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev. Chil. Hist. Nat. 66, 131–141 (1993).

    Google Scholar 

  • 15.

    Fajardo, A. & Piper, F. I. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. N. Phytol. 189, 259–271 (2011).

    Article  Google Scholar 

  • 16.

    Burns, S. L., Cellini, J. M., Lencinas, M. V., Martínez Pastur, G. J. & Rivera, S. M. Description of possible natural hybrids between Nothofagus pumilio and N. antarctica at South Patagonia (Argentina). Bosque 31(1), 9–16 (2010).

    Article  Google Scholar 

  • 17.

    Quiroga, P., Vidal Russel, R. & Premoli, A. C. Evidencia morfológica e isoenzimática de hibridación natural entre Nothofagus antarctica y N. pumilio en el noroeste patagónico. Bosque 26(2), 25–32 (2005).

    Article  Google Scholar 

  • 18.

    Acosta, M. C. & Premoli, A. C. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Phylogenet. Evol. 54, 235–242 (2010).

    Article  CAS  Google Scholar 

  • 19.

    Soliani, C. et al. Halfway encounters: meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol. Phylogenet. Evol. 85, 197–207 (2015).

    Article  Google Scholar 

  • 20.

    Pastorino, M. J. & Gallo, L. A. Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For. Ecol. Manag. 257, 2350–2358 (2009).

    Article  Google Scholar 

  • 21.

    Pastorino, M. J., Aparicio, A. & Azpilicueta, M. M. Regiones de Procedencia del Ciprés de la Cordillera y Bases Conceptuales para el Manejo de sus Recursos Genéticos en Argentina.108 p (Ediciones INTA, 2015).

  • 22.

    Azpilicueta, M. M. et al. Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For. Ecol. Manag. 302, 414–424 (2013).

    Article  Google Scholar 

  • 23.

    Azpilicueta et al. Zonas Genéticas de Raulí y Roble Pellín en Argentina: Herramientas para la Conservación y el Manejo de la Diversidad Genética (ed. M.M. Azpilicueta, P. Marchelli) 50 p (Ediciones INTA, 2016).

  • 24.

    OTBN. Ordenamiento Territorial de Bosque Nativo/Mapa Legal CREA. https://www.crea.org.ar/mapalegal/otbn

  • 25.

    Bucci, G. & Vendramin, G. G. Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol. Ecol. 9, 923–934 (2000).

    CAS  Article  Google Scholar 

  • 26.

    McKay, J. K., Christian, C. E., Harrison, S. & Rice, K. J. “How Local Is Local?”—a review of practical and conceptual issues in the genetics of restoration. Restor. Ecol. 13, 432–440 (2005).

    Article  Google Scholar 

  • 27.

    Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111(4), 287–297 (2013).

    Google Scholar 

  • 28.

    Geburek, T. Isozymes and DNA markers in gene conservation of forest trees. Biodivers. Conserv. 6, 1639–1654 (1997).

    Article  Google Scholar 

  • 29.

    Ballesteros-Mejia, L., Lima, J. S. & Collevatti, R. G. Spatially-explicit analyses reveal the distribution of genetic diversity and plant conservation status in Cerrado biome. Biodivers. Conserv. 29, 1537–1554 (2018).

    Article  Google Scholar 

  • 30.

    Frankel, O. H., Brown, A. H. D. & Bordon, J. The Genetic Diversity of Wild Plants. In: The Conservation of Plant Biodiversity. (Cambridge University Press, Cambridge, 1995).

  • 31.

    Petit, R. J., El Mousadik, A. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).

    Article  Google Scholar 

  • 32.

    van Zonneveld, M. et al. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7, e29845. https://doi.org/10.1371/journal.pone.0029845 (2010).

    CAS  Article  Google Scholar 

  • 33.

    Soliani, C., Gallo, L. & Marchelli, P. Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genet. Genomes 8, 659–673 (2012).

    Article  Google Scholar 

  • 34.

    Laikre, L. et al. Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv. Biol. 24(1), 86–88 (2009).

    Article  Google Scholar 

  • 35.

    Fady, B. et al. Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century?. Reg. Environ. Change 16, 927–939 (2016).

    Article  Google Scholar 

  • 36.

    Graudal, L. et al. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For. Ecol. Manag. 333, 35–51 (2014).

    Article  Google Scholar 

  • 37.

    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).

    Article  Google Scholar 

  • 38.

    Perez, et al. Assessing population structure in the face of isolation by distance: Are we neglecting the problem?. Divers. Distrib. 24(12), 1883–1889 (2018).

    Article  Google Scholar 

  • 39.

    Mathiasen, P. & Premoli, A. C. Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol. Ecol. 19, 371–385 (2010).

    CAS  Article  Google Scholar 

  • 40.

    Jump, A. & Peñuelas, J. Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol. Ecol. 16, 925–936 (2007).

    CAS  Article  Google Scholar 

  • 41.

    Oddou-Muratorio, S. et al. Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. For. Ecol. Manag. 259, 2151–2159 (2010).

    Article  Google Scholar 

  • 42.

    Marchelli, P. & Gallo, L. Multiple ice-age refugia in a southern beech of South America as evidenced by chloroplast DNA markers. Conserv. Genet. 7, 591–603 (2006).

    Article  CAS  Google Scholar 

  • 43.

    Pastorino, M. J. & Gallo, L. A. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian forest. J. Biogeogr. 29, 1167–1178 (2002).

    Article  Google Scholar 

  • 44.

    Villagrán, C. Un modelo de la historia de la vegetación de la cordillera de la costa de Chile central-sur: la hipótesis glacial de Darwin. Rev. Chil. Hist. Nat. 74, 793–803 (2001).

    Article  Google Scholar 

  • 45.

    Cosacov, A., Sersic, A., Sosa, V., Johnson, L. & Cocucci, A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).

    Google Scholar 

  • 46.

    Breitman, M. F., Avila, L. J., Sites, J. W. & Morando, M. Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Mol. Phylogenet. Evol. 59, 364–376 (2011).

    Article  Google Scholar 

  • 47.

    Flint, R. F. & Fidalgo, F. Glacial drift in the eastern argentine Andes between latitude 41° 10’ S. and latitude 43° 10’ S. GSA Bull. 80, 1043–1052 (1969).

    Article  Google Scholar 

  • 48.

    Holderegger, R. & Thiel-Egenter, C. A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J. Biogeogr. 36, 476–480 (2009).

    Article  Google Scholar 

  • 49.

    Glasser, N. F., Jansson, K., Harrison, S. & Kleman, J. The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Sci. Rev. 27(3), 365–390 (2008).

    ADS  Article  Google Scholar 

  • 50.

    Premoli, A. C., Mathiasen, P. & Kitzberger, T. Southern-most Nothofagus trees enduring ice ages: genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 247–256 (2010).

    Article  Google Scholar 

  • 51.

    Derory, J. et al. What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies?. Ann. For. Sci. 59, 699–708 (2002).

    Article  Google Scholar 

  • 52.

    Honjo, M. et al. Management units of the endangered herb Primula sieboldii based on microsatellite variation among and within populations throughout Japan. Conserv. Genet. 10, 257–267 (2009).

    CAS  Article  Google Scholar 

  • 53.

    Väli, U., Einarsson, A., Waits, L. & Ellegren, H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations?. Mol Ecol. 17(17), 3808–3817 (2018).

    Article  Google Scholar 

  • 54.

    Reed, D. H. & Frankham, R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evol. 55(6), 1095–1103 (2001).

    CAS  Article  Google Scholar 

  • 55.

    Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).

    CAS  Article  Google Scholar 

  • 56.

    Widmer, A. & Lexer, C. Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol. Evol. 16, 267–269 (2001).

    CAS  Article  Google Scholar 

  • 57.

    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).

    Article  Google Scholar 

  • 58.

    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58 (2009).

    CAS  Article  Google Scholar 

  • 59.

    Prober, S. et al. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 3, 65 (2015).

    Article  Google Scholar 

  • 60.

    Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).

    Article  Google Scholar 

  • 61.

    Marchelli, P., Thomas, E., Azpilicueta, M. M., van Zonneveld, M. & Gallo, L. Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genet. Genomes 13, 119 (2017).

    Article  Google Scholar 

  • 62.

    Thomas, E. et al. Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodivers. Conserv. 26(4), 825–842 (2016).

    Article  Google Scholar 

  • 63.

    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    Article  Google Scholar 

  • 64.

    Dumolin, S., Demesure, B. & Petit, R. J. Inheritance of chloroplast and mitochondrial genomes in pedunculated oak investigated with an efficient PCR method. Theor. Appl. Genet. 91, 1253–1256 (1995).

    CAS  Article  Google Scholar 

  • 65.

    Soliani, C., Sebastiani, F., Marchelli, P., Gallo, L. & Giovanni, G. Development of novel genomic microsatellite markers in the southern beech Nothofagus pumilio (Poepp. et Endl.) Krasser. Mol. Ecol. Resour. 10, 404–408 (2010).

    Article  Google Scholar 

  • 66.

    Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).

    CAS  Article  Google Scholar 

  • 67.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. J. Bioinform. 28, 2537–2539 (2012).

    CAS  Article  Google Scholar 

  • 68.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Balzarini, M. & Di Rienzo, J. Info-Gen: Software para Análisis Estadístico de Datos Genéticos. Facultad de Ciencia Agropecuarias. Universidad Nacional de Córdoba. Argentina. https://www.info-gen.com.ar/. (2003).

  • 70.

    Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article  CAS  Google Scholar 

  • 71.

    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).

    Article  CAS  Google Scholar 

  • 72.

    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).

    CAS  Article  Google Scholar 

  • 73.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1949).

    MathSciNet  Article  Google Scholar 

  • 75.

    Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).

    CAS  Article  Google Scholar 

  • 76.

    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. J. Heredity 82, 561–573 (1999).

    Article  Google Scholar 

  • 77.

    Corander, J., Waldmann, P. & Sillanpää, M. J. Bayesian analysis of genetic differentiation between populations. Genetics 163, 367–374 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Pastorino, M. J., Marchelli, P., Milleron, M., Soliani, C. & Gallo, L. A. The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica. Genetica 136, 79–88 (2009).

    CAS  Article  Google Scholar 

  • 79.

    Pritchard, J., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. https://www.genetics.org/content/155/2/945.long. (2000).

  • 80.

    Thomas, E. et al. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7, e47676. https://doi.org/10.1371/journal.pone.0047676 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    Article  Google Scholar 

  • 82.

    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).

    Article  Google Scholar 

  • 83.

    Goudet, J. FSTAT: a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3.2) https://www.unil.ch/izea/softwares/fstat.html. (2001).


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets