in

Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects

  • 1.

    Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.

    • Google Scholar
  • 2.

    Bondy-Denomy J, Davidson AR. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol. 2014;52:235–42.

    • Google Scholar
  • 3.

    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.

    • Google Scholar
  • 4.

    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brussow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.

    • Google Scholar
  • 5.

    Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015;13:641–50.

    • Google Scholar
  • 6.

    Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol. 2015;197:410–9.

    • Google Scholar
  • 7.

    Touchon M, Bernheim A, Rocha EPC. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.

    • Google Scholar
  • 8.

    Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.

    • Google Scholar
  • 9.

    Helfrich S, Pfeifer E, Kramer C, Sachs CC, Wiechert W, Kohlheyer D, et al. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. Mol Microbiol. 2015;98:636–50.

    • Google Scholar
  • 10.

    Pennington JM, Rosenberg SM. Spontaneous DNA breakage in single living Escherichia coli cells. Nat Genet. 2007;39:797–802.

    • Google Scholar
  • 11.

    Simmons LA, Goranov AI, Kobayashi H, Davies BW, Yuan DS, Grossman AD, et al. Comparison of responses to double-strand breaks double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS inductions. J Bacteriol. 2009;191:1152.

    • Google Scholar
  • 12.

    Kamenšek S, Podlesek Z, Gillor O, Zgur-Bertok D. Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression. BMC Microbiol. 2010;10:283.

    • Google Scholar
  • 13.

    Nanda AM, Heyer A, Krämer C, Grünberger A, Kohlheyer D, Frunzke J. Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level. J Bacteriol. 2014;196:180.

    • Google Scholar
  • 14.

    Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays. 2017;39:1700112.

    • Google Scholar
  • 15.

    Leitet C, Riemann L, Hagstrom A. Plasmids and prophages in Baltic Sea bacterioplankton isolates. J Mar Biol Assoc UK. 2006;86:567–75.

    • Google Scholar
  • 16.

    Stopar D, Cerne A, Zigman M, Poljsak-Prijatelj M, Turk V. Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the Gulf of Trieste. Microb Ecol. 2004;47:1–8.

    • Google Scholar
  • 17.

    Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci USA. 2014;111:10714–9.

    • Google Scholar
  • 18.

    Duhaime MB, Deng L, Poulos BT, Sullivan MB. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol. 2012;14:2526–37.

    • Google Scholar
  • 19.

    Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.

    • Google Scholar
  • 20.

    Payet JP, Suttle CA. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol Oceanogr. 2013;58:465–74.

    • Google Scholar
  • 21.

    Williamson SJ, Houchin LA, McDaniel L, Paul JH. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol. 2002;68:4307–14.

    • Google Scholar
  • 22.

    Jiang SC, Paul JH. Significance of lysogeny in the marine environment: Studies with isolates and a model of lysogenic phage production. Microb Ecol. 1998;35:235–43.

    • Google Scholar
  • 23.

    Weinbauer MG, Suttle CA. Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol. 1999;18:217–25.

    • Google Scholar
  • 24.

    Thingstad TF, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol. 1997;13:19–27.

    • Google Scholar
  • 25.

    Luo E, Aylward FO, Mende DR, DeLong EF. Bacteriophage distributions and temporal variability in the Ocean’s Interior. Mbio. 2017;8:1–13.

    • Google Scholar
  • 26.

    Giovannoni S, Temperton B, Zhao YL. SAR11 viruses and defensive host strains reply. Nature. 2013;499:E4–5.

    • Google Scholar
  • 27.

    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guemes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466–70.

    • Google Scholar
  • 28.

    Weitz JS, Beckett SJ, Brum JR, Cael BB, Dushoff J. Lysis, lysogeny and virus-microbe ratios. Nature. 2017;549:E1–3.

    • Google Scholar
  • 29.

    Knowles B, Rohwer F. Knowles & Rohwer reply. Nature. 2017;549:E3–4.

    • Google Scholar
  • 30.

    Billerbeck S, Wemheuer B, Voget S, Poehlein A, Giebel HA, Brinkhoff T, et al. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. Nat Microbiol. 2016;1:1–8.

    • Google Scholar
  • 31.

    Buchan A, Gonzalez JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.

    • Google Scholar
  • 32.

    Slightom RN, Buchan A. Surface colonization by marine Roseobacters: integrating genotype and phenotype. Appl Environ Microbiol. 2009;75:6027–37.

    • Google Scholar
  • 33.

    Zhao YL, Wang K, Ackermann HW, Halden RU, Jiao NZ, Chen F. Searching for a “Hidden” prophage in a Marine Bacterium. Appl Environ Microbiol. 2010;76:589–95.

    • Google Scholar
  • 34.

    Chen F, Wang K, Stewart J, Belas R. Induction of multiple prophages from a marine bacterium: a genomic approach. Appl Environ Microbiol. 2006;72:4995–5001.

    • Google Scholar
  • 35.

    Ankrah NYD, Budinoff CR, Wilson WH, Wilhelm SW, Buchan A. Genome sequences of two temperate phages, ΦCB2047-A and ΦCB2047-C, infecting Sulfitobacter sp. Strain 2047. Genome Announc. 2014;2:1–2.

    • Google Scholar
  • 36.

    Ankrah NYD, Lane T, Budinoff CR, Hadden MK, Buchan A. Draft genome sequence of Sulfitobacter sp. CB2047, a member of the roseobacter clade of marine bacteria, isolated from an Emiliania huxleyi Bloom. Genome Announc. 2014;2:1–2.

    • Google Scholar
  • 37.

    Budinoff CR, Hollibaugh JT. Ecophysiology of a mono lake picocyanobacterium. Limnol Oceanogr. 2007;52:2484–95.

    • Google Scholar
  • 38.

    Ankrah NYD. Elucidating the impact of roseophage on roseobacter metabolism and marine nutrient cycles [Doctoral dissertation]. Knoxville: The University of Tennessee; 2015.

  • 39.

    Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: methods and protocols, Volume 1: isolation, characterization, and interactions. Totowa, NJ: Humana Press; 2009. p. 69–76.

  • 40.

    Nieto PA, Covarrubias PC, Jedlicki E, Holmes DS, Quatrini R. Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol Biol. 2009;10:63.

    • Google Scholar
  • 41.

    Green MR. In: Sambrook J, editor. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor Laboratory Press: NY; 2012.

  • 42.

    Cude WN, Prevatte CW, Hadden MK, May AL, Smith RT, Swain CL, et al. Phaeobacter sp strain Y4I utilizes two separate cell-to-cell communication systems to regulate production of the antimicrobial indigoidine. Appl Environ Microbiol. 2015;81:1417–25.

    • Google Scholar
  • 43.

    Pagarete A, Le Corguille G, Tiwari B, Ogata H, de Vargas C, Wilson WH, et al. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms. FEMS Microbiol Ecol. 2011;78:555–64.

    • Google Scholar
  • 44.

    Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19.

    • Google Scholar
  • 45.

    Mahadevan P, King JF, Seto D. CGUG: in silico proteome and genome parsing tool for the determination of “core” and unique genes in the analysis of genomes up to ca. 1.9 Mb. BMC Res Notes. 2009;2:168.

    • Google Scholar
  • 46.

    Fouts DE. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res. 2006;34:5839–51.

    • Google Scholar
  • 47.

    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.

    • Google Scholar
  • 48.

    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.

    • Google Scholar
  • 49.

    Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, et al. Comparative Genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol. 2009;191:7206.

    • Google Scholar
  • 50.

    Randall-Hazelbauer L, Schwartz M. Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol. 1973;116:1436–46.

    • Google Scholar
  • 51.

    Wang J, Hofnung M, Charbit A. The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. J Bacteriol. 2000;182:508.

    • Google Scholar
  • 52.

    Mavrich TN, Hatfull GF. Evolution of superinfection immunity in cluster A mycobacteriophages. mBio. 2019;10:e00971–19.

    • Google Scholar
  • 53.

    Degnan PH, Michalowski CB, Babić AC, Cordes MHJ, Little JW. Conservation and diversity in the immunity regions of wild phages with the immunity specificity of phage λ. Mol Microbiol. 2007;64:232–44.

    • Google Scholar
  • 54.

    Berngruber TW, Weissing FJ, Gandon S. Inhibition of superinfection and the evolution of viral latency. J Virol. 2010;84:10200.

    • Google Scholar
  • 55.

    Butala M, Žgur-Bertok D, Busby SJW. The bacterial LexA transcriptional repressor. Cell Mol Life Sci. 2008;66:82.

    • Google Scholar
  • 56.

    Campoy S, Hervàs A, Busquets N, Erill I, Teixidó L, Barbé J. Induction of the SOS response by bacteriophage lytic development in Salmonella enterica. Virology. 2006;351:360–7.

    • Google Scholar
  • 57.

    Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol. 2006;188:7101–10.

    • Google Scholar
  • 58.

    Campos J, Martinez E, Suzarte E, Rodriguez BL, Marrero K, Silva Y, et al. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol. 2003;185:5685–96.

    • Google Scholar
  • 59.

    Espeland EM, Lipp EK, Huq A, Colwell RR. Polylysogeny and prophage induction by secondary infection in Vibrio cholerae. Environ Microbiol. 2004;6:760–3.

    • Google Scholar
  • 60.

    Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, et al. Communication between viruses guides lysis-lysogeny decisions. Nature. 2017;541:488–93.

    • Google Scholar
  • 61.

    Clark AJ, Inwood W, Cloutier T, Dhillon TS. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages1 1 (Edited by) M Gottesman. J Mol Biol. 2001;311:657–79.

  • 62.

    De Paepe M, Hutinet G, Son O, Amarir-Bouhram J, Schbath S, Petit M-A. Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinases. PLoS Genet. 2014;10:e1004181.

    • Google Scholar
  • 63.

    Bouchard JD, Moineau S. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology. 2000;270:65–75.

    • Google Scholar
  • 64.

    Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell. 2013;49:237–48.

    • Google Scholar
  • 65.

    Howard-Varona C, Roux S, Dore H, Solonenko NE, Holmfeldt K, Markillie LM, et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 2017;11:284–95.

    • Google Scholar
  • 66.

    Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae. PLoS ONE. 2010;5:1–10.

    • Google Scholar
  • 67.

    Bossi L, Fuentes JA, Mora G, Figueroa-Bossi N. Prophage contribution to bacterial population dynamics. J Bacteriol. 2003;185:6467–71.

    • Google Scholar
  • 68.

    Stewart FM, Levin BR. The population biology of bacterial viruses: why be temperate. Theor Popul Biol. 1984;26:93–117.

    • Google Scholar
  • 69.

    Cortes MG, Krog J, Balázsi G. Optimality of the spontaneous prophage induction rate. J Theor Biol. 2019;483:110005.

    • Google Scholar
  • 70.

    Davies EV, James CE, Kukavica-Ibrulj I, Levesque RC, Brockhurst MA, Winstanley C. Temperate phages enhance pathogen fitness in chronic lung infection. ISME J. 2016;10:2553–5.

    • Google Scholar
  • 71.

    Gama JA, Reis AM, Domingues I, Mendes-Soares H, Matos AM, Dionisio F. Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS ONE. 2013;8:1–9.

    • Google Scholar
  • 72.

    Li XY, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M. Temperate phages as self-replicating weapons in bacterial competition. J R Soc Interface. 2017;14:1–7.

  • 73.

    Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.

    • Google Scholar
  • 74.

    LeCleir GR, DeBruyn JM, Maas EW, Boyd PW, Wilhelm SW. Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps. FEMS Microbiol Ecol. 2014;87:153–63.

    • Google Scholar
  • 75.

    Budinoff CR. Diversity and activity of roseobacters and roseophage [Doctoral dissertation]. Knoxville: The University of Tennessee; 2012.

  • 76.

    Lederberg J, Iino T. Phase variation in Salmonella. Genetics. 1956;41:743–57.

    • Google Scholar
  • 77.

    Wang XX, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun. 2010;1:1–9.

    • Google Scholar
  • 78.

    Terzi M, Levinthal C. Effects of λ-phage infection on bacterial synthesis. J Mol Biol. 1967;26:525–35.

    • Google Scholar
  • 79.

    Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.

    • Google Scholar
  • 80.

    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.

    • Google Scholar

  • Source: Ecology - nature.com

    High frequency social calls indicate food source defense in foraging Common pipistrelle bats

    Recovery of fen peatland microbiomes and predicted functional profiles after rewetting