in

Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions

  • 1.

    Jacob, C. K. Corynespora leaf disease of Hevea brasiliensis: A threat to natural rubber production in Corynespora Leaf Disease of H. brasiliensis: strategies for management (Ed. C.K Jacob) 9–16 (Rubber Research Institute of India, 2006).

  • 2.

    Oghenekaro, A. O., Daniel, G. & Asiegbu, F. O. The saprotrophic wood-degrading abilities of Rigidoporus microporus. Silva Fenn. 49, 1–10 (2015).

    • Article
    • Google Scholar
  • 3.

    Oghenekaro, A. O. et al. Molecular phylogeny of Rigidoporus microporus isolates associated with white rot disease of rubber trees (Hevea brasiliensis). Fungal Biol. 118, 495–506 (2014).

  • 4.

    Nandris, D., Nicole, M. & Geiger, J. P. Root-Rot Diseases of Rubber Trees. Plant Dis. 71, 298–306 (1987).

    • Article
    • Google Scholar
  • 5.

    Mohammed, C. L., Rimbawanto, A. & Page, D. E. Management of basidiomycete root- and stem-rot diseases in oil palm, rubber and tropical hardwood plantation crops. Forest Pathol. 44, 428–46 (2012).

    • Article
    • Google Scholar
  • 6.

    Nandris, D., Nicole, M. & Geiger, J. P. Root-Rot Diseases of the Rubber Tree in the Ivory-Coast .1. Severity, Dynamics, and Characterization of Epidemics. Can. J. Forest Res. 18, 1248–54 (1988).

    • Article
    • Google Scholar
  • 7.

    Gibertoni, T. B., Santos, P. J. P. & Cavalcanti, M. A. Q. Ecological aspects of Aphyllophorales in the Atlantic rain forest in northeast Brazil. Fungal Divers. 25, 49–67 (2007).

    • Google Scholar
  • 8.

    Justo, A. et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 121, 798–824 (2017).

  • 9.

    Miettinen, O. & Larsson, K. H. Sidera, a new genus in Hymenochaetales with poroid and hydnoid species. Mycol. Prog. 10, 131–41 (2011).

    • Article
    • Google Scholar
  • 10.

    Oghenekaro, A. O., Raffaello, T., Kovalchuk, A. & Asiegbu, F. O. De novo transcriptomic assembly and profiling of Rigidoporus microporus during saprotrophic growth on rubber wood. BMC Genomics. 17, 234 (2016).

  • 11.

    Larsson, K. H. et al. Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia. 98, 926–36 (2006).

  • 12.

    Floudas, D. et al. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science. 336, 1715–1719 (2012).

  • 13.

    Min, B. et al. Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation. J. Biotechnol. 211, 42–3 (2015).

  • 14.

    Chung, C. L. et al. Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees. Mol. Ecol. 26, 6301–6316 (2017).

  • 15.

    Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).

  • 16.

    Kubicek, C. P., Starr, T. L. & Glass, N. L. Plant Cell Wall-Degrading Enzymes and Their Secretion in Plant-Pathogenic Fungi. Annu. Rev. Phytopathol. 52, 427–451 (2014).

  • 17.

    Friesen, T. L., Faris, J. D., Solomon, P. S. & Oliver, R. P. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol. 10, 1421–1428 (2008).

  • 18.

    Raffaello, T. & Asiegbu, F. O. Small secreted proteins from the necrotrophic conifer pathogen Heterobasidion annosum s. l. (HaSSPs) induce cell death in Nicotiana benthamiana. Sci. Rep. 7, 8000 (2017).

  • 19.

    Lo Presti, L. et al. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015).

  • 20.

    Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–94 (2000).

  • 21.

    Arfi, Y., Levasseur, A. & Record, E. Differential gene expression in Pycnoporus coccineus during interspecific mycelial interactions with different competitors. Appl. Environ. Microbiol. 79, 6626–6636 (2013).

  • 22.

    Fitzpatrick, D. A. Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 329, 1–8 (2012).

  • 23.

    Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008).

  • 24.

    Soanes, D. & Richards, T. A. Horizontal Gene Transfer in Eukaryotic Plant Pathogens. Annu. Rev. Phytopathol. 52, 583–614 (2014).

  • 25.

    Rahman, A. Y. et al. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics. 14, 75 (2013).

  • 26.

    Lam, K. K., LaButti, K., Khalak, A. & Tse, D. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads. Bioinformatics. 31, 3207–3209 (2015).

  • 27.

    Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

  • 28.

    Kuo, A., Bushnell, B. & Grigoriev, I. V. Fungal Genomics: Sequencing and Annotation. Adv. Bot. Res. 70, 1–52 (2014).

    • Article
    • Google Scholar
  • 29.

    Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

  • 30.

    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 8, 785–786 (2011).

  • 31.

    Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

  • 32.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

  • 33.

    Urban, M. et al. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database. Nucleic Acids Res. 45, D604–D10 (2017).

  • 34.

    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–258 (2014).

  • 35.

    Ferreira, P., Carro, J., Serrano, A. & Martinez, A. T. A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes. Mycologia. 107, 1105–1119 (2015).

  • 36.

    Podell, S. & Gaasterland., T. DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol. 8, R16 (2007).

  • 37.

    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–80 (2013).

  • 38.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 5, e9490 (2010).

  • 39.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28, 1647–1649 (2012).

  • 40.

    Kemppainen, M. J. & Pardo, A. G. Transformation of the mycorrhizal fungus Laccaria bicolor using Agrobacterium tumefaciens. Bioeng. Bugs. 2, 38–44 (2011).

  • 41.

    Ghangal, R., Raghuvanshi, S. & Sharma, P. C. Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol. Bioch. 47, 1113–1115 (2009).

  • 42.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013).

  • 43.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 31, 166–169 (2015).

  • 44.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

  • 45.

    Alexa, A & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.24.0 (2016).

  • 46.

    Raffaello, T. & Asiegbu, F. O. Evaluation of potential reference genes for use in gene expression studies in the conifer pathogen (Heterobasidion annosum). Mol. Biol. Rep. 40, 4605–4611 (2013).

  • 47.

    Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).

  • 48.

    Zdobnov, E. M. et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 45, D744–D749 (2017).

  • 49.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

  • 50.

    Guindon, S. et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

  • 51.

    Lefort, V., Longueville, J. E. & Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).

  • 52.

    Sugiura, N. Further Analysis of Data by Akaikes Information Criterion and Finite Corrections. Commun. Stat a-Theor. 7, 13–26 (1978).

  • 53.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

  • 54.

    Nagy, L. G. et al. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. Mol. Biol. Evol. 33, 959–970 (2016).

  • 55.

    Riley, R. et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 111, 9923–9928 (2014).

  • 56.

    Stack, D., Neville, C. & Doyle, S. Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiol-Sgm. 153, 1297–1306 (2007).

  • 57.

    Eisendle, M., Oberegger, H., Zadra, I. & Haas, H. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine N-5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49, 359–375 (2003).

  • 58.

    Schrettl, M. et al. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. Plos Pathog. 3, 1195–1207 (2007).

  • 59.

    Haselwandter, K. et al. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Biometals. 26, 969–979 (2013).

  • 60.

    Brandenburger, E. et al. A Highly Conserved Basidiomycete Peptide Synthetase Produces a Trimeric Hydroxamate Siderophore. Appl. Environ. Microb. 83, e01478–17 (2017).

  • 61.

    Kalb, D., Lackner, G., Rappe, M. & Hoffmeister, D. Activity of -Aminoadipate Reductase Depends on the N-Terminally Extending Domain. Chembiochem. 16, 1426–1430 (2015).

  • 62.

    Xu, H. Y., Andi, B., Qian, J. H., West, A. H. & Cook, P. F. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem. Biophys. 46, 43–64 (2006).

  • 63.

    Lopez-Gallego, F., Wawrzyn, G. T. & Schmidt-Dannert, C. Selectivity of Fungal Sesquiterpene Synthases: Role of the Active Site’s H-1 alpha Loop in Catalysis. Appl. Environ. Microb. 76, 7723–7733 (2010).

  • 64.

    Braesel, J. et al. Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus. Chem. Biol. 22, 1325–1334 (2015).

  • 65.

    Wisecaver, J. H. & Rokas, A. Fungal metabolic gene clusters-caravans traveling across genomes and environments. Front. Microbiol. 6, 161 (2015).

  • 66.

    Del Sorbo, G., Schoonbeek, H. & De Waard, M. A. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet. Biol. 30, 1–15 (2000).

  • 67.

    MacPherson, S., Larochelle, M. & Turcotte, B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol. Mol. Biol. Rev. 70, 583–604 (2006).

  • 68.

    Bergmann, S. et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3, 213–217 (2007).

  • 69.

    Wu, F., Chen, J. J., Ji, X. H., Vlasak, J. & Dai, Y. C. Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, Physisporinus, Oxyporus, and Leucophellinus. Mycologia. 109, 749–65 (2017).

    • PubMed
    • Google Scholar
  • 70.

    Chen, H.-P. & Liu, J.-K. Secondary Metabolites from Higher Fungi. 72–123 (Springer, 2017).

  • 71.

    Jaramillo, V. D., Sukno, S. A. & Thon, M. R. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genomics. 16, 2 (2015).

  • 72.

    Dowding, P. Concluding remarks: methods for studying microbial interactions. Ann. Appl. Biol. 89, 167–171 (1978).

    • Article
    • Google Scholar
  • 73.

    Holmer, L. & Stenlid, J. The importance of inoculum size for the competitive ability of wood decomposing fungi. FEMS Microbiol. Ecol. 12, 169–176 (1993).

    • Article
    • Google Scholar
  • 74.

    Adomas, A., Eklund, M., Johansson, M. & Asiegbu, F. O. Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol. Ecol. 57, 26–39 (2006).

  • 75.

    Carruthers, S. M. & Rayner, A. D. M. Fungal communities in decaying hardwood branches. T. Brit. Mycol. Soc. 72, 283–289 (1979).

    • Article
    • Google Scholar
  • 76.

    Magan, N. & Lacey, J. Effect of water activity, temperature and substrate on interactions between field and storage fungi. T. Brit. Mycol. Soc. 82, 83–93 (1984).

    • Article
    • Google Scholar
  • 77.

    Holmer, L., Renvall, P. & Stenlid, J. Selective replacement between species of wood-rotting basidiomycetes, a laboratory study. Mycol. Res. 101, 714–720 (1997).

    • Article
    • Google Scholar
  • 78.

    Feldman, D., Kowbel, D. J., Glass, N. L., Yarden, O. & Hadar, Y. A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus. Sci. Rep. 7, 14553 (2017).

  • 79.

    Cornish, K. The separate roles of plant cis and trans prenyl transferases in cis- 1,6 polyisoprene biosynthesis. Eur. J. Biochem. 218, 267–271 (1993).

  • 80.

    Ball, S. R, Kwan, A. H. & Sunde, M. Hydrophobin Rodlets on the Fungal Cell Wall. Curr Top Microbiol. Immunol. https://doi.org/10.1007/82_2019_186 (2019).

    • Google Scholar
  • 81.

    Braaz, R., Armbruster, W. & Jendrossek, D. Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly(cis-1,4-Isoprene) by a dioxygenase mechanism. Appl. Environ. Microbiol. 71, 2473–2478 (2005).

  • 82.

    Rose, K., Tenberge, K. B. & Steinbuchel, A. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. Biomacromolecules. 6, 180–188 (2005).

  • 83.

    Chengalroyen, M. D. & Dabbs, E. R. The Biodegradation of Latex Rubber: A Minireview. J. Polym. Environ. 21, 874–880 (2013).

  • 84.

    Kaewchai, S., Lin, F., Wang, H. & Soytong, K. Characterization of Rigidoporus microporus isolated from rubber trees based on morphology and ITS sequencing. J. Agric. Tech. 6, 289–298 (2010).

    • Google Scholar
  • 85.

    Kaewchai, S., Wang, H. K., Lin, F. C., Hyde, K. D. & Soytong, K. Genetic variation among isolates of Rigidoporus microporus causing white root disease of rubber trees in Southern Thailand revealed by ISSR markers and pathogenicity. Afr. J. Microbiol Res. 3, 641–648 (2009).

    • CAS
    • Google Scholar
  • 86.

    Hamidson, S. H. & Naito, S. Distribution of Rigidoporus lignosus genotypes in a rubber plantation, as revealed by somatic compatibility. Mycoscience. 45, 72–75 (2004).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean