in

Genome wide association analysis of a stemborer egg induced “call-for-help” defence trait in maize

  • 1.

    Labandeira, C. C. A paleobiologic perspective on plant-insect interactions. Curr. Opin. Plant Biol. 16, 414–421 (2013).

    PubMed  Google Scholar 

  • 2.

    Moles, A. T. et al. Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytol. 198, 252–263 (2013).

    PubMed  Google Scholar 

  • 3.

    Bruce, T. J. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J. Exp. Bot. 66, 455–465 (2014).

    PubMed  Google Scholar 

  • 4.

    Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).

    CAS  PubMed  Google Scholar 

  • 5.

    Alborn, H. et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945–949 (1997).

    CAS  Google Scholar 

  • 6.

    Hilker, M. & Meiners, T. Early herbivore alert: insect eggs induce plant defense. J. Chem. Ecol. 32, 1379–1397 (2006).

    CAS  PubMed  Google Scholar 

  • 7.

    Tamiru, A. et al. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 14, 1075–1083 (2011).

    PubMed  Google Scholar 

  • 8.

    Vet, L. E. & Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141–172 (1992).

    Google Scholar 

  • 9.

    Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167–175 (2010).

    CAS  PubMed  Google Scholar 

  • 10.

    Heil, M. Indirect defence via tritrophic interactions. New Phytol. 178, 41–61 (2008).

    CAS  PubMed  Google Scholar 

  • 11.

    Dicke, M. & Sabelis, M. W. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds?. Funct. Ecol. 2, 131–139 (1988).

    Google Scholar 

  • 12.

    Turlings, T. C., Tumlinson, J. H. & Lewis, W. J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251–1253 (1990).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Conway, G. R. Agroecosystem analysis. Agric. Admin. 20, 31–55 (1985).

    Google Scholar 

  • 14.

    Gepts, P. Plant genetic resources conservation and utilization. Crop Sci. 46, 2278–2292 (2006).

    Google Scholar 

  • 15.

    Ratnadass, A., Fernandes, P., Avelino, J. & Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron. Sustain. Dev. 32, 273–303 (2012).

    Google Scholar 

  • 16.

    Bruce, T. J. Gm as a route for delivery of sustainable crop protection. J. Exp. Bot. 63, 537–541 (2012).

    CAS  PubMed  Google Scholar 

  • 17.

    de Lange, E. S., Balmer, D., Mauch-Mani, B. & Turlings, T. C. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol. 204, 329–341 (2014).

    Google Scholar 

  • 18.

    Kfir, R., Overholt, W., Khan, Z. & Polaszek, A. Biology and management of economically important lepidopteran cereal stem borers in Africa. Annu. Rev. Entomol. 47, 701–731 (2002).

    CAS  PubMed  Google Scholar 

  • 19.

    Fess, T. L., Kotcon, J. B. & Benedito, V. A. Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability 3, 1742–1772 (2011).

    Google Scholar 

  • 20.

    Tamiru, A. et al. Oviposition induced volatile emissions from African smallholder farmers’ maize varieties. J. Chem. Ecol. 38, 231–234 (2012).

    CAS  PubMed  Google Scholar 

  • 21.

    Mutyambai, D. M. et al. Responses of parasitoids to volatiles induced by Chilo partellus oviposition on teosinte, a wild ancestor of maize. J. Chem. Ecol. 41, 323–329 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Dicke, M. et al. Isolation and identification of volatile kairomone that affects acarine predator prey interactions: involvement of host plant in its production. J. Chem. Ecol. 16, 381–396 (1990).

    CAS  PubMed  Google Scholar 

  • 23.

    Fontana, A. et al. Attractiveness of constitutive and herbivore-induced sesquiterpene blends of maize to the parasitic wasp Cotesia marginiventris (cresson). J. Chem. Ecol. 37, 582 (2011).

    CAS  PubMed  Google Scholar 

  • 24.

    Richter, A. et al. Characterization of biosynthetic pathways for the production of the volatile homoterpenes dmnt and tmtt in Zea mays. Plant Cell 28, 2651–2665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Vick, B. A. & Zimmerman, D. C. Characterization of 12-oxo-phytodienoic acid reductase in corn: the jasmonic acid pathway. Plant Physiol. 80, 202–205 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Schaller, A. & Stintzi, A. Enzymes in jasmonate biosynthesis—structure, function, regulation. Phytochemistry 70, 1532–1538 (2009).

    CAS  PubMed  Google Scholar 

  • 27.

    Köllner, T. G. et al. Herbivore-induced sabath methyltransferases of maize that methylate anthranilic acid using S-adenosyl-l-methionine. Plant Physiol. 153, 1795–1807 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Song, W. et al. Identification of immune related LRR-containing genes in maize (Zea mays L.) by genome-wide sequence analysis. Int. J. Genomics https://doi.org/10.1155/2015/231358 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Gouhier-Darimont, C., Stahl, E., Glauser, G. & Reymond, P. The arabidopsis lectin receptor kinase LecRK-i.8 is involved in insect egg perception. Front. Plant Sci. 10, 623 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Szczegielniak, J. et al. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signaling. Physiol. Plant. 146, 1–14 (2012).

    CAS  PubMed  Google Scholar 

  • 31.

    Singh, A., Sagar, S. & Biswas, D. K. Calcium dependent protein kinase, a versatile player in plant stress management and development. Crit. Rev. Plant Sci. 36, 336–352 (2017).

    Google Scholar 

  • 32.

    Stratmann, J. Map kinases in plant responses to herbivory. In Induced Plant Resistance to Herbivory, 329–347 (Springer, 2008).

  • 33.

    Zhang, P. et al. Genome-wide identification, phylogeny and expression analysis of the pme and pmei gene families in maize. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  • 34.

    Louis, J. et al. Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol. 169, 313–324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Gierl, A. & Frey, M. Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213, 493–498 (2001).

    CAS  PubMed  Google Scholar 

  • 36.

    Tang, H. M. et al. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J. 77, 380–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Pickett, J. A. & Khan, Z. R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol. 212, 856–870 (2016).

    CAS  PubMed  Google Scholar 

  • 38.

    Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60, 35–58 (2015).

    CAS  PubMed  Google Scholar 

  • 39.

    Mitchell, C., Brennan, R. M., Graham, J. & Karley, A. J. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci. 7, 1132 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Masuka, B. P. et al. Genetic diversity among selected elite cimmyt maize hybrids in east and southern Africa. Crop Sci. 57, 2395–2404 (2017).

    Google Scholar 

  • 41.

    Vidal, M. C. & Murphy, S. M. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138–150 (2018).

    PubMed  Google Scholar 

  • 42.

    Stenberg, J. A., Heil, M., Åhman, I. & Björkman, C. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 20, 698–712 (2015).

    CAS  PubMed  Google Scholar 

  • 43.

    Ochieng, R., Onyango, F. & Bungu, M. Improvement of techniques for mass-culture of Chilo partellus (swinhoe). Int. J. Trop. Insect Sci. 6, 425–428 (1985).

    Google Scholar 

  • 44.

    Overholt, W., Ochieng, J., Lammers, P. & Ogedah, K. Rearing and field release methods for Cotesia flavipes cameron (Hymenoptera: Braconidae), a parasitoid of tropical gramineous stem borers. Int. J. Trop. Insect Sci. 15, 253–259 (1994).

    Google Scholar 

  • 45.

    Bradbury, P. J. et al. Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    CAS  PubMed  Google Scholar 

  • 46.

    Schnable, P. S. et al. The b73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Google Scholar 

  • 48.

    Dabney, A., Storey, J. D. & Warnes, G. qvalue: Q-value estimation for false discovery rate control. R package version 1 (2010).

  • 49.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440–9445 (2003).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 50.

    Storey, J. D., Taylor, J. E. & Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J. R. Stat. Soc. Ser. B 66, 187–205 (2004).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Innovations in environmental training for the mining industry

    Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter