in

Global conservation of species’ niches

  • 1.

    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).

  • 2.

    Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51, 238–254 (2002).

  • 3.

    Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl Acad. Sci. USA 114, 12755–12760 (2017).

  • 4.

    Laikre, L. Genetic diversity is overlooked in international conservation policy implementation. Conserv. Genet. 11, 349–354 (2010).

    • Article
    • Google Scholar
  • 5.

    Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6, e29080 (2011).

  • 6.

    Beresford, A. E. et al. Poor overlap between the distribution of protected areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).

    • Article
    • Google Scholar
  • 7.

    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633–2641 (2011).

    • Article
    • Google Scholar
  • 8.

    Ficetola, G. F., Rondinini, C., Bonardi, A., Baisero, D. & Padoa-Schioppa, E. Habitat availability for amphibians and extinction threat: a global analysis. Divers. Distrib. 21, 302–311 (2015).

    • Article
    • Google Scholar
  • 9.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

  • 10.

    Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).

  • 11.

    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    • Article
    • Google Scholar
  • 12.

    Vega, G. C., Pertierra, L. R. & Olalla-Tárraga, M. Á. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci. Data 4, 170078 (2017).

  • 13.

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

  • 14.

    IUCN & UNEP-WCMC. The World Database on Protected Areas (WDPA). https://www.protectedplanet.net (2019).

  • 15.

    IUCN. A global standard for the identification of Key Biodiversity Areas (version 1.0, first edn) (IUCN, 2016).

  • 16.

    BirdLife International. Digital boundaries of Key Biodiversity Areas from the World Database of Key Biodiversity Areas. March 2019 version http://www.keybiodiversityareas.org/site/requestgis (2019).

  • 17.

    IUCN. The IUCN Red List of Threatened Species. version 2016.5 http://iucnredlist.org (2016).

  • 18.

    Hoban, S. et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).

  • 19.

    Ficetola, G. F. & Bernardi, F. Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations. Anim. Conserv. 8, 33–40 (2005).

    • Article
    • Google Scholar
  • 20.

    Chen, Y. Y. et al. Patterns of adaptive and neutral diversity identify the Xiaoxiangling mountains as a refuge for the giant panda. PLoS ONE 8, e70229 (2013).

  • 21.

    Ekblom, R. et al. Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol. Ecol. 16, 1439–1451 (2007).

  • 22.

    Fjeldså, J. & Irestedt, M. Diversification of the South American avifauna: patterns and implications for conservation in the Andes. Ann. Mo. Bot. Gard. 96, 398–409 (2009).

    • Article
    • Google Scholar
  • 23.

    Verboom, G. A. et al. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Mol. Phylogenet. Evol. 51, 44–53 (2009).

  • 24.

    Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).

  • 25.

    Lei, F., Qu, Y., Song, G., Alström, P. & Fjeldså, J. The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China. Integr. Zool. 10, 171–181 (2015).

  • 26.

    Butchart, S. H. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

  • 27.

    Maxwell, S. L. et al. Being smart about SMART environmental targets. Science 347, 1075–1076 (2015).

  • 28.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

  • 29.

    Donald, P. F. et al. The prevalence, characteristics and effectiveness of Aichi Target 11’s “other effective area-based conservation measures” (OECMs) in Key Biodiversity Areas. Conserv. Lett. 12, e12659 (2019).

    • Article
    • Google Scholar
  • 30.

    Gannon, P. et al. Status and prospects for achieving Aichi Biodiversity Target 11: implications of national commitments and priority actions. PARKS 23.2, 9–22 (2017).

    • Google Scholar
  • 31.

    Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

  • 32.

    Coetzer, K. L., Witkowski, E. T. F. & Erasmus, B. F. N. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label? Biol. Rev. Camb. Philos. Soc. 89, 82–104 (2014).

  • 33.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2017).

  • 34.

    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).

    • Google Scholar
  • 35.

    Hijmans, R. J. raster: geographic data analysis and modelling. R package version 2.5-8 https://CRAN.R-project.org/package=raster (2016).

  • 36.

    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

  • 37.

    Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions. version 3.4.0 http://biodiversityinformatics.amnh.org/open_source/maxent (2017).

  • 38.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    • Article
    • Google Scholar
  • 39.

    Smith, T. B., Kinnison, M. T., Strauss, S. Y., Fuller, T. L. & Carroll, S. P. Prescriptive evolution to conserve and manage biodiversity. Annu. Rev. Ecol. Evol. Syst. 45, 1–22 (2014).

    • Article
    • Google Scholar
  • 40.

    Vega, G. C., Pertierra, L. R. & Olalla-Tárraga, M. Á. Data from: MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. https://doi.org/10.5061/dryad.s2v81.2 (2017).

  • 41.

    Hanson, J. O., Rhodes, J. R., Possingham, H. P. & Fuller, R. A. raptr: representative and adequate prioritizations in R. Methods Ecol. Evol. 9, 320–330 (2018).

    • Article
    • Google Scholar
  • 42.

    Anderson, M. G. & Ferree, C. E. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE 5, e11554 (2010).

  • 43.

    Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).

    • Article
    • Google Scholar
  • 44.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

  • 45.

    Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd International Conference on Knowledge Discovery and Data Mining (eds Simoudis, E. et al.) 226–231 (AAAI, 1996).

  • 46.

    Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002).

  • 47.

    Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).

    • Article
    • Google Scholar
  • 48.

    Beresford, A. et al. Minding the protection gap: estimates of species’ range sizes and holes in the protected area network. Anim. Conserv. 14, 114–116 (2011).

    • Article
    • Google Scholar
  • 49.

    Rodrigues, A. S. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

  • 50.

    Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).

  • 51.

    Pressey, R. L. & Logan, V. S. Level of geographical subdivision and its effects on assessments of reserve coverage: a review of regional studies. Conserv. Biol. 8, 1037–1046 (1994).

    • Article
    • Google Scholar
  • 52.

    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).

    • Article
    • Google Scholar
  • 53.

    Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com (2018).

  • 54.

    Hanson, J. et al. prioritizr: systematic conservation prioritization in R. R package version 3.0.3.3 https://github.com/prioritizr/prioritizr (2017).


  • Source: Ecology - nature.com

    The nature of deep overturning and reconfigurations of the silicon cycle across the last deglaciation

    Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration