in

Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest

  • 1.

    Bonan, G. B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 320, 1444–1449 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Shevliakova, E. et al. Historical warming reduced due to enhanced land carbon uptake. Proceedings of the National Academy of Sciences 110, 16730–16735 (2013).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Pan, Y. et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 333, 988–993 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun 7, 13428 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    ADS  Article  Google Scholar 

  • 7.

    Keenan, T. F. & Williams, C. A. The Terrestrial Carbon Sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).

    Article  Google Scholar 

  • 8.

    Le Quéré, C. et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    ADS  Article  Google Scholar 

  • 9.

    Pastorello, G. et al. A New Data Set to Keep a Sharper Eye on Land-Air Exchanges. Eos, https://doi.org/10.1029/2017EO071597 (2017).

  • 10.

    Bonan, G. B. et al. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res. 116, G02014 (2011).

    ADS  Article  Google Scholar 

  • 11.

    Slevin, D., Tett, S. F. B., Exbrayat, J.-F., Bloom, A. A. & Williams, M. Global evaluation of gross primary productivity in the JULES land surface model v3.4.1. Geosci. Model Dev. 10, 2651–2670 (2017).

    ADS  Article  Google Scholar 

  • 12.

    Wang, L. et al. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sensing 9, 418 (2017).

    ADS  Article  Google Scholar 

  • 13.

    Barman, R., Jain, A. K. & Liang, M. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis. Glob Change Biol 20, 1394–1411 (2014).

    ADS  Article  Google Scholar 

  • 14.

    Beer, C. et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834–838 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    Zhang, Z. et al. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Sci Rep 7, 3108 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Papale, D. & Valentini, R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol 9, 525–535 (2003).

    ADS  Article  Google Scholar 

  • 18.

    Papale, D. et al. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks: Sampling Effect on Fluxes Upscaling. J. Geophys. Res. Biogeosci. 120, 1941–1957 (2015).

    Article  Google Scholar 

  • 19.

    Yang, F. et al. Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through Support Vector Machine approach. Remote Sensing of Environment 110, 109–122 (2007).

    ADS  Article  Google Scholar 

  • 20.

    Ueyama, M. et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression: Upscaling CO2 Fluxes in Alaska. J. Geophys. Res. Biogeosci. 118, 1266–1281 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression: Data-Driven CO2 Fluxes in Asia. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).

    CAS  Article  Google Scholar 

  • 22.

    Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

    Article  Google Scholar 

  • 24.

    Xiao, J. et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology 148, 1827–1847 (2008).

    ADS  Article  Google Scholar 

  • 25.

    Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sensing of Environment 114, 576–591 (2010).

    ADS  Article  Google Scholar 

  • 26.

    Tramontana, G., Ichii, K., Camps-Valls, G., Tomelleri, E. & Papale, D. Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data. Remote Sensing of Environment 168, 360–373 (2015).

    ADS  Article  Google Scholar 

  • 27.

    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites withregression algorithms. Biogeosciences 13, 4291–4313 (2016).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D. & Reichstein, M. Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product. Earth Syst. Sci. Data 10, 1327–1365 (2018).

    ADS  Article  Google Scholar 

  • 29.

    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. https://www.biogeosciences-discuss.net/bg-2019-368/bg-2019-368.pdf (2019).

  • 30.

    Garnaud, C., Sushama, L. & Arora, V. K. The effect of driving climate data on the simulated terrestrial carbon pools and fluxes over North America: Effect of climate on terrestrial carbon pools. Int. J. Climatol. 34, 1098–1110 (2014).

    Article  Google Scholar 

  • 31.

    Zhao, Y. et al. How errors on meteorological variables impact simulated ecosystem fluxes: a case study for six French sites. Biogeosciences 9, 2537–2564 (2012).

    ADS  Article  Google Scholar 

  • 32.

    Chen, M. et al. Regional contribution to variability and trends of global gross primary productivity. Environ. Res. Lett. 12, 105005 (2017).

    ADS  Article  CAS  Google Scholar 

  • 33.

    Wright, M. N. & Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Soft. 77, (2017).

  • 34.

    Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).

    MATH  Article  Google Scholar 

  • 35.

    Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees. (Belmont, CA, Wadsworth, 1984).

    Google Scholar 

  • 36.

    Ishwaran, H. The effect of splitting on random forests. Mach Learn 99, 75–118 (2015).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 37.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11, 1424–1439 (2005).

    ADS  Article  Google Scholar 

  • 38.

    Camacho, F., Cernicharo, J., Lacaze, R., Baret, F. & Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sensing of Environment 137, 310–329 (2013).

    ADS  Article  Google Scholar 

  • 39.

    Joiner, J. et al. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sensing 10, 1346 (2018).

    ADS  Article  Google Scholar 

  • 40.

    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci Data 4, 170165 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Monteith, J. L. Solar Radiation and Productivity in Tropical Ecosystems. The Journal of Applied Ecology 9, 747 (1972).

    Article  Google Scholar 

  • 42.

    Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home (2017).

  • 43.

    Zeng, J. A Data-driven Upscale Product of Global Gross Primary Production, Net Ecosystem Exchange and Ecosystem Respiration. National Institute for Environmental Studies https://doi.org/10.17595/20200227.001 (2020).

  • 44.

    Zhang, L. et al. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources. J. Geophys. Res. 116, G00J03 (2011).

    Article  CAS  Google Scholar 

  • 45.

    Norton, A. J. et al. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16, 3069–3093 (2019).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Badgley, G., Anderegg, L. D. L., Berry, J. A. & Field, C. B. Terrestrial gross primary production: Using NIR V to scale from site to globe. Glob Change Biol 25, 3731–3740 (2019).

    ADS  Article  Google Scholar 

  • 47.

    Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Li, W. et al. Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophys. Res. Lett. 45, 1058–1068 (2018).

    ADS  Article  Google Scholar 

  • 49.

    M. Friedl, D. S. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD12C1.006 (2015).


  • Source: Ecology - nature.com

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores