in

Goosegrass Detection in Strawberry and Tomato Using a Convolutional Neural Network

  • 1.

    Secretariat, G. Eleusine indica (L.) Gaertn. GBIF Backbone Taxonomy. Checklist dataset, https://doi.org/10.15468/39omei, Accessed 24 April 2019 (2017).

  • 2.

    Masin, R., Zuin, M. C., Archer, D. W., Forcella, F. & Zanin, G. WeedTurf: a predictive model to aid control of annual summer weeds in turf. Weed Sci. 53, 193–201, https://doi.org/10.1614/WS-04-066R1 (2005).

    CAS  Article  Google Scholar 

  • 3.

    Nishimoto, R. K. & McCarty, L. B. Fluctuating temperature and light influence seed germination of goosegrass (Eleusine indica). Weed Sci. 45, 426–429, https://doi.org/10.1017/S0043174500093103 (1997).

    CAS  Article  Google Scholar 

  • 4.

    Chauhan, B. S. & Johnson, D. E. Germination ecology of goosegrass (Eleusine indica): An important grass weed of rainfed rice. Weed Sci. 56, 699–706, https://doi.org/10.1614/WS-08-048.1 (2008).

    CAS  Article  Google Scholar 

  • 5.

    Webster, T. M. Weed survey – southern states 2014. Vegetable, fruit and nut crop subsection. In Proceedings of the Southern Weed Science Society 67th Annual Meeting, 288. (Southern Weed Science Society, 2014).

  • 6.

    Xiao-yan, M., Han-wen, W., Wei-li, J., Ya-jie, M. & Yan, M. Goosegrass (Eleusine indica) density effects on cotton (Gossypium hirsutum). J. Integr. Agr 14, 1778–1785, https://doi.org/10.1016/S2095-3119(15)61058-9 (2015).

    Article  Google Scholar 

  • 7.

    Wandscheer, A. C. D., Rizzardi, M. A. & Reichert, M. Competitive ability of corn in coexistence with goosegrass. Planta Daninha 31, 281–289, https://doi.org/10.1590/S0100-83582013000200005 (2013).

    Article  Google Scholar 

  • 8.

    Bewick, T. A., Kostewicz, S. R., Stall, W. M., Shilling, D. G. & Smith, K. Interaction of cupric hydroxide, paraquat, and biotype of American black nightshade (Solanum americanum). Weed Sci. 38, 634–638 (1990).

    CAS  Article  Google Scholar 

  • 9.

    Buker, R. S., Steed, S. T. & Stall, W. M. Confirmation and control of a paraquat-tolerant goosegrass (Eleusine indica) biotype. Weed Technol. 16, 309–313 (2002).

    CAS  Article  Google Scholar 

  • 10.

    Fernandez, J. V., Odero, D. C., MacDonald, G. E., Ferrell, J. & Gettys, L. A. Confirmation, characterization, and management of glyphosate-resistant ragweed parthenium (Parthenium hysterophorus L.) in the Everglades agricultural area of south Florida. Weed Technol. 29, 233–242, https://doi.org/10.1614/WT-D-14-00113.1 (2015).

    Article  Google Scholar 

  • 11.

    Fennimore, S. A., Slaughter, D. C., Siemens, M. C., Leon, R. G. & Saber, M. N. Technology for automation of weed control in specialty crops. Weed Technology 30, 823–837 (2016).

    Article  Google Scholar 

  • 12.

    Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw 61, 85–117 (2015).

    Article  Google Scholar 

  • 13.

    Dyrmann, M., Karstoft, H. & Midtiby, H. S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 151, 72–80 (2016).

    Article  Google Scholar 

  • 14.

    Ball, J. E., Anderson, D. T. & Chan, C. S. A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community. J. Appl. Remote Sens 11, 042609 (2017).

    ADS  Article  Google Scholar 

  • 15.

    Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recogn 77, 354–377 (2017).

    Article  Google Scholar 

  • 16.

    Yu, J., Sharpe, S. M., Schumann, A. W. & Boyd, N. S. Deep learning for image-based weed detection in turfgrass. Eur. J. Agr 104, 78–84, https://doi.org/10.1016/j.eja.2019.01.004 (2019).

    Article  Google Scholar 

  • 17.

    Yu, J., Sharpe, S. M., Schumann, A. W. & Boyd, N. S. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks. Pest Manag. Sci. 75, 2211–2218, https://doi.org/10.1002/ps.5349 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Dyrmann, M., Jørgensen, R. N. & Midtiby, H. S. RoboWeedSupport – Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. In J. A. Taylor, D. Cammarano, A. Prashar, & H. A (Eds.), Proceedings of the 11th European Conference on Precision Agriculture. Adv. Anim. Biosci 8, 842–847, https://doi.org/10.1017/S2040470017000206 (2017).

    Article  Google Scholar 

  • 19.

    Sharpe, S. M., Schumann, A. W. & Boyd, N. S. Detection of Carolina geranium (Geranium carolinianum) growing in competition with strawberry using convolutional neural networks. Weed Sci. 67, 239–245, https://doi.org/10.1017/wsc.2018.66 (2019).

    Article  Google Scholar 

  • 20.

    Sharpe, S. M., Schumann, A. W., Yu, J. & Boyd, N. S. Vegetation detection and discrimination within vegetable plasticulture row middles using a convolutional neural network. Precis. Agric. 21, 264–277, https://doi.org/10.1007/s11119-019-09666-6 (2019).

    Article  Google Scholar 

  • 21.

    Chen, Y. et al. Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sens 11, 1584, https://doi.org/10.3390/rs11131584 (2019).

    ADS  Article  Google Scholar 

  • 22.

    Sa, I. et al. DeepFruits: A fruit detection system using deep neural networks. Sensors 16, 1222, https://doi.org/10.3390/s16081222 (2016).

    Article  Google Scholar 

  • 23.

    Fuentes, A. F., Yoon, S., Lee, J. & Park, D. S. High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank. Front. Plant Sci. 9, 1162, https://doi.org/10.3389/fpls.2018.01162 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Bryson, C., & DeFelice, M. Weeds of the South. Athens: University of Georgia Press. 467 p. (2009).

  • 25.

    Urban, G. et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155, 1069–1078.e8, https://doi.org/10.1053/j.gastro.2018.06.037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Dyrmann, M., Skovsen, S., Laursen, M. S. & Jørgensen, R. N. Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. In The 14th International Conference on Precision Agriculture, 1–7. (International Society of Precision Agriculture, 2018).

  • 27.

    Blaschko, M. B., Vedaldi, A., & Zisserman, A. Simultaneous object detection and ranking with weak supervision. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 23. Vancouver, BC, Canada, http://papers.nips.cc/paper/4105-simultaneous-object-detection-and-ranking-with-weak-supervision.pdf Accessed 29 April 2019 (2010).

  • 28.

    Buda, M., Maki, A. & Mazurowski, M. A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw 106, 249–259, https://doi.org/10.1016/j.neunet.2018.07.011 (2018).

    Article  PubMed  Google Scholar 

  • 29.

    Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Fountas, S. & Vasilakoglou, I. Towards weed identification assistance through transfer learning. Comput. Electron. Agric. 171, 105306, https://doi.org/10.1016/j.compag.2020.105306 (2020).

    Article  Google Scholar 

  • 30.

    McCool, C., Perez, T. & Upcroft, B. Mixtures of lightweight deep convolutional neural networks: Applied to agricultural robotics. IEEE Robot Autom. Lett 2, 1344–1351, https://doi.org/10.1109/LRA.2017.2667039 (2017).

    Article  Google Scholar 

  • 31.

    Vioix, J. B., Douzals, J. P., Truchetet, F., Assémat, L. & Guillemin, J. P. Spatial and spectral methods for weed detection and localization. EURASIP J Applied Signal Proc 200, 679–685, https://doi.org/10.1155/S1110865702204072 (2002).

    Article  MATH  Google Scholar 

  • 32.

    Milioto, A., Lottes, P. & Stachniss, C. Real-time blob-wise sugar beet vs weeds classification for monitoring fields using convolutional neural networks. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41–48. (International Society for Photogrammetry and Remote Sensing, 2017).

  • 33.

    Olsen, A. et al. DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning. Sci. Rep 9, 1–12, https://doi.org/10.1038/s41598-018-38343-3 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Zheng, Y. Y. et al. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19, 1058, https://doi.org/10.3390/s19051058 (2019).

    Article  Google Scholar 

  • 35.

    Tang, J. et al. Weed identification based on K-means feature learning combined with convolutional neural network. Comput. Electron. Agric. 135, 63–70, https://doi.org/10.1016/j.compag.2017.01.001 (2017).

    Article  Google Scholar 

  • 36.

    Redmon, J. & Farhadi, A. YOLOv3: An incremental improvement. arXiv preprint, 1804.02767, https://arxiv.org/abs/1804.02767 (2018).

  • 37.

    He, W., Huang, Z., Wei, Z., Li, C. & Guo, B. TF-YOLO: An improved incredmental network for real-time object detection. Appl. Sci 9, 3225, https://doi.org/10.3390/app9163225 (2019).

    Article  Google Scholar 

  • 38.

    Redmon, J. & Farhadi, A. YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition, 7263–7271. (Institute of Electrical and Electronics Engineers, 2017).

  • 39.

    Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788. (Institute of Electrical and Electronics Engineers, 2016).

  • 40.

    Redmon, J. Darknet: Open source neural networks in C (2013–2016), http://pjreddie.com/darknet/ (2016).

  • 41.

    Lin, T.-Y. et al. Microsoft COCO: Common objects in context. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 740–755, https://doi.org/10.1007/978-3-319-10602-1_48 (European Conference on Computer Vision, 2014).

  • 42.

    Sokolova, M. & Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag 45, 427–437, https://doi.org/10.1016/j.ipm.2009.03.002 (2009).

    Article  Google Scholar 

  • 43.

    Hoiem, D., Chodpathumwan, Y. & Dai, Q. Diagnosing error in object detectors. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Computer Vision–ECCV 2012 (pp. 340–353). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33712-3_25 (2012).


  • Source: Ecology - nature.com

    A layered approach to safety

    Tiny sand grains trigger massive glacial surges