in

Habitat complexity and lifetime predation risk influence mesopredator survival in a multi-predator system

  • 1.

    Schmitz, O. J., Miller, J. R. B., Trainor, A. M. & Abrahms, B. Toward a community ecology of landscapes: predicting multiple predator–prey interactions across geographic space. Ecology 98, 2281–2292 (2017).

    PubMed  Article  Google Scholar 

  • 2.

    van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history. Am. Nat. 128, 137–142 (1986).

    Article  Google Scholar 

  • 3.

    Gaillard, J.-M. et al. Habitat-performance relationships: finding the right metric at a given spatial scale. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2255–2265 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Mosser, A., Fryxell, J. M., Eberly, L. & Packer, C. Serengeti real estate: Density vs. fitness-based indicators of lion habitat quality. Ecol. Lett.12, 1050–1060 (2009).

  • 5.

    Kosterman, M. K., Squires, J. R., Holbrook, J. D., Pletscher, D. H. & Hebblewhite, M. Forest structure provides the income for reproductive success in a southern population of Canada lynx. Ecol. Appl. 28, 1032–1043 (2018).

    PubMed  Article  Google Scholar 

  • 6.

    DeCesare, N. J. et al. Linking habitat selection and predation risk to spatial variation in survival. J. Anim. Ecol. 83, 343–352 (2014).

    PubMed  Article  Google Scholar 

  • 7.

    Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).

    Article  Google Scholar 

  • 8.

    McLoughlin, P. D., Dunford, J. S. & Boutin, S. Relating predation mortality to broad-scale habitat selection. J. Anim. Ecol. 74, 701–707 (2005).

    Article  Google Scholar 

  • 9.

    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).

    PubMed  Article  Google Scholar 

  • 10.

    Vanak, A. T. et al. Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores. Ecology 94, 2619–2631 (2013).

    PubMed  Article  Google Scholar 

  • 11.

    Torretta, E., Serafini, M., Puopolo, F. & Schenone, L. Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (N–W Italy). Acta Ethol. 19, 123–132 (2016).

    Article  Google Scholar 

  • 12.

    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501–509 (2005).

    Article  Google Scholar 

  • 13.

    Swanson, A. et al. Cheetahs and wild dogs show contrasting patterns of suppression by lions. J. Anim. Ecol. 83, 1418–1427 (2014).

    PubMed  Article  Google Scholar 

  • 14.

    Levi, T. & Wilmers, C. Wolves—coyotes—foxes: a cascade among carnivores. Ecology 93, 921–929 (2012).

    PubMed  Article  Google Scholar 

  • 15.

    Henke, S. E. & Bryant, F. C. Effects of coyote removal on the faunal community in western Texas. J. Wildl. Manag. 63, 1066 (1999).

    Article  Google Scholar 

  • 16.

    Gehrt, S. D. & Prange, S. Interference competition between coyotes and raccoons: a test of the mesopredator release hypothesis. Behav. Ecol. 18, 204–214 (2007).

    Article  Google Scholar 

  • 17.

    St-Pierre, C., Ouellet, J. P. & Crête, M. Do competitive intraguild interactions affect space and habitat use by small carnivores in a forested landscape?. Ecography (Cop.) 29, 487–496 (2006).

    Article  Google Scholar 

  • 18.

    Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).

    Article  Google Scholar 

  • 19.

    Allen, M. L., Elbroch, L. M., Wilmers, C. C. & Wittmer, H. U. The comparative effects of large carnivores on the acquisition of carrion by scavengers. Am. Nat. 185, 822–833 (2015).

    PubMed  Article  Google Scholar 

  • 20.

    Janssen, A., Sabelis, M. W., Magalhães, S. & Van, T. Habitat structure affects intraguild predation. Ecology 88, 2713–2719 (2007).

    PubMed  Article  Google Scholar 

  • 21.

    Finke, D. L. & Denno, R. F. Intraguild predation diminished in complex-structured vegetation: Implication for prey suppression. Ecology 83, 643–652 (2002).

    Article  Google Scholar 

  • 22.

    Laurenson, M. K. High juvenile mortality in cheetahs (Acinonyx jubatus) and its consequences for maternal care. J. Zool. Soc. Lond. 234, 387–408 (1994).

    Article  Google Scholar 

  • 23.

    Hunter, J. S., Durant, S. M. & Caro, T. M. To flee or not to flee: predator avoidance by cheetahs at kills. Behav. Ecol. Sociobiol. 61, 1033–1042 (2007).

    Article  Google Scholar 

  • 24.

    Hilborn, A. et al. Cheetahs modify their prey handling behavior depending on risks from top predators. Behav. Ecol. Sociobiol.72, 74 (2018).

  • 25.

    Swanson, A., Arnold, T., Kosmala, M., Forester, J. & Packer, C. In the absence of a “landscape of fear”: How lions, hyenas, and cheetahs coexist. Ecol. Evol. 6, 8534–8545 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol. Evol.7, 189–199 (2016).

  • 27.

    Broekhuis, F., Cozzi, G., Valeix, M., Mcnutt, J. W. & Macdonald, D. W. Risk avoidance in sympatric large carnivores: Reactive or predictive?. J. Anim. Ecol. 82, 1098–1105 (2013).

    PubMed  Article  Google Scholar 

  • 28.

    Mills, M. G. L. & Mills, M. E. J. Cheetah cub survival revisited: a re-evaluation of the role of predation, especially by lions, and implications for conservation. J. Zool. 292, 136–141 (2014).

    Article  Google Scholar 

  • 29.

    Broekhuis, F. Natural and anthropogenic drivers of cub recruitment in a large carnivore. Ecol. Evol. 8, 6748–6755 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Orrock, J. L., Preisser, E. L., Grabowski, J. H. & Trussell, G. C. The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology 94, 573–579 (2013).

    PubMed  Article  Google Scholar 

  • 31.

    Donelan, S. C., Grabowski, J. H. & Trussell, G. C. Refuge quality impacts the strength of nonconsumptive effects on prey. Ecology 98, 403–411 (2016).

    Article  Google Scholar 

  • 32.

    Miller, J. R. B., Ament, J. M. & Schmitz, O. J. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. J. Anim. Ecol. 83, 214–222 (2014).

    PubMed  Article  Google Scholar 

  • 33.

    Michel, M. J. & Adams, M. M. Differential effects of structural complexity on predator foraging behavior. Behav. Ecol. 20, 313–317 (2009).

    Article  Google Scholar 

  • 34.

    Blake, L. W. & Gese, E. M. Resource selection by cougars: influence of behavioral state and season. J. Wildl. Manag. 80, 1205–1217 (2016).

    Article  Google Scholar 

  • 35.

    Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).

    Article  Google Scholar 

  • 36.

    Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE 11, 1–20 (2016).

    Google Scholar 

  • 37.

    Camp, M. J., Rachlow, J. L., Woods, B. A., Johnson, T. R. & Shipley, L. A. When to run and when to hide: the influence of concealment, visibility, and proximity to refugia on perceptions of risk. Ethology 118, 1010–1017 (2012).

    Article  Google Scholar 

  • 38.

    Wilson, A. M. et al. Locomotion dynamics of hunting in wild cheetahs. Nature 498, 185–189 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Rostro-García, S., Kamler, J. F. & Hunter, L. T. B. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa. PLoS ONE 10, e0117743 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Mills, M. G. L., Broomhall, L. S., du Toit, J. T. & Toit, J. T. Cheetah Acinonyx jubatus feeding ecology in the Kruger National Park and a comparison across African savanna habitats: is the cheetah only a successful hunter on open grassland plains?. Wildl. Biol. 10, 177–186 (2004).

    Article  Google Scholar 

  • 41.

    Fuller, T. & Sievert, P. Carnivore demography and the consequences of changes in prey availability. in Carnivore conservation (eds. Gittleman, J. L., Funk, S. M., Macdonald, D. & Wayne, R. K.) 163–179 (Cambridge University Press, Cambridge 2001).

  • 42.

    Balme, G., Hunter, L. T. B. & Slotow, R. Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim. Behav. 74, 589–598 (2007).

    Article  Google Scholar 

  • 43.

    Gosselink, T. E., Van Deelen, T. R., Warner, R. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wildl. Manag. 67, 90–103 (2003).

    Article  Google Scholar 

  • 44.

    Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).

    Google Scholar 

  • 46.

    Creel, S. The control of risk hypothesis: reactive vs. proactive antipredator responses and stress-mediated vs. food-mediated costs of response. Ecol. Lett.21, 947–956 (2018).

  • 47.

    Dudeck, B. P., Clinchy, M., Allen, M. C. & Zanette, L. Y. Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography. Ecology 99, 127–135 (2018).

    PubMed  Article  Google Scholar 

  • 48.

    Gigliotti, L. C. et al. Context-dependency of top-down, bottom-up, and density-dependent influences on cheetah demography. J. Anim. Ecol. 2, 449–459 (2020).

    Article  Google Scholar 

  • 49.

    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).

    Article  Google Scholar 

  • 50.

    Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 1–7 (2016).

    Article  CAS  Google Scholar 

  • 51.

    Valeix, M. et al. Behavioral adjustments of African herbivores to predation risk by lions: Spatiotemporal variations influence habitat use. Ecology 90, 23–30 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Sheriff, M. J., Krebs, C. J. & Boonstra, R. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78, 1249–1258 (2009).

    PubMed  Article  Google Scholar 

  • 53.

    Clinchy, M. et al. Multiple measures elucidate glucocorticoid responses to environmental variation in predation threat. Oecologia 166, 607–614 (2011).

    ADS  PubMed  Article  Google Scholar 

  • 54.

    Travers, M., Clinchy, M., Zanette, L., Boonstra, R. & Williams, T. D. Indirect predator effects on clutch size and the cost of egg production. Ecol. Lett. 13, 980–988 (2010).

    PubMed  Google Scholar 

  • 55.

    LaManna, J. A. & Martin, T. E. Costs of fear: behavioural and life-history responses to risk and their demographic consequences vary across species. Ecol. Lett. 19, 403–413 (2016).

    PubMed  Article  Google Scholar 

  • 56.

    Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).

    Article  Google Scholar 

  • 57.

    Tews, J. & Jeltsch, F. Modelling the impact of climate change on woody plant population dynamics in South African savanna. BMC Ecol. 4, 1–12 (2004).

    Article  Google Scholar 

  • 58.

    Joubert, D. F., Smit, G. N. & Hoffman, M. T. The role of fire in preventing transitions from a grass dominated state to a bush thickened state in arid savannas. J. Arid Environ. 87, 1–7 (2012).

    ADS  Article  Google Scholar 

  • 59.

    Lohmann, D., Tietjen, B., Blaum, N., Joubert, D. F. & Jeltsch, F. Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangelands. J. Arid Environ. 107, 49–56 (2014).

    ADS  Article  Google Scholar 

  • 60.

    Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 114, 528–533 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Weise, F. J. et al. The distribution and numbers of cheetah (Acinonyx jubatus) in southern Africa. PeerJ 5, e4096 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).

    Article  Google Scholar 

  • 63.

    Moll, R. J. et al. The many faces of fear: a synthesis of the methodological variation in characterizing predation risk. J. Anim. Ecol. 86, 749–765 (2017).

    PubMed  Article  Google Scholar 

  • 64.

    Janse van Rensburg, J., McMillan, M., Giżejewska, A. & Fattebert, J. Rainfall predicts seasonal home range size variation in nyala. Afr. J. Ecol.56, 418–423 (2018).

  • 65.

    Hunter, L. T. B. The behavioural ecology of reintroduced lions and cheetahs in the Phinda Resource Reserve, Kwazulz-Natal, South Africa. Phd thesis 1–206 (1998).

  • 66.

    Caro, T. M. Cheetahs of the Serengeti Plains. (The University of Chicago Press, Chicago, 1994).

  • 67.

    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).

    Article  Google Scholar 

  • 68.

    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).

    PubMed  Article  Google Scholar 

  • 69.

    Moll, R. J., Killion, A. K., Montgomery, R. A., Tambling, C. J. & Hayward, M. W. Spatial patterns of African ungulate aggregation reveal complex but limited risk effects from reintroduced carnivores. Ecology 97, 1123–1134 (2016).

    PubMed  Google Scholar 

  • 70.

    Kauffman, M. J. et al. Landscape heterogeneity shapes predation in a newly restored predator-prey system. Ecol. Lett. 10, 690–700 (2007).

    PubMed  Article  Google Scholar 

  • 71.

    Tsalyuk, M., Kelly, M. & Getz, W. M. Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS J. Photogramm. Remote Sens. 131, 77–91 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Winterstein, S. R. Chi-square tests for intrabrood independence when using the Mayfield method. J. Wildl. Manage. 56, 398–402 (1992).

    Article  Google Scholar 

  • 73.

    Barker, R. J., White, G. C. & McDougall, M. Movement of Paradise Shelduck between molt sites: a joint multistate-dead recovery mark-recapture model. J. Wildl. Manage. 69, 1194–1201 (2005).

    Article  Google Scholar 

  • 74.

    Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. Version 2.2.4. (2013).

  • 75.

    Kelly, M. J. et al. Demography of the Serengeti cheetah (Acinonyx jubatus) population: the first 25 years. J. Zool. 224, 473–488 (1998).

    Article  Google Scholar 

  • 76.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).

    Google Scholar 

  • 77.

    Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach