in

Herbivorous damselfishes expand their territories after causing white scars on Porites corals

  • 1.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience?. Ann. Rev. Mar. Sci. 11, 307–334 (2019).

    PubMed  Article  Google Scholar 

  • 4.

    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B 370, 20130268 (2015).

    Article  Google Scholar 

  • 5.

    Holbrook, S. J., Schmitt, R. J., Adam, T. C. & Brooks, A. J. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6, 35817 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B 283, 20151985 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 7.

    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Article  Google Scholar 

  • 8.

    Liao, Z., Yu, K., Wang, Y., Huang, X. & Xu, L. Coral–algal interactions at Weizhou Island in the northern South China Sea: variations by taxa and the exacerbating impact of sediments trapped in turf algae. PeerJ 7, e6590 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    McCook, L. Competition between corals and algal turfs along a gradient of terrestrial influence in the nearshore central Great Barrier Reef. Coral Reefs 19, 419–425 (2001).

    ADS  Article  Google Scholar 

  • 10.

    McCook, L. J., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).

    ADS  Article  Google Scholar 

  • 11.

    Vermeij, M. J. A. et al. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE 5, e14312 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Cheal, A. J. et al. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).

    ADS  Article  Google Scholar 

  • 13.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Ceccarelli, D. M., Jones, G. P. & McCook, L. J. Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 39, 355–389 (2001).

    Google Scholar 

  • 15.

    Hata, H. & Ceccarelli, D. Farming behaviour of territorial damselfishes. In Biology of damselfishes (eds Frédérich, B. & Parmentier, E.) 122–152 (CRC Press, Boca Raton, 2016).

    Google Scholar 

  • 16.

    Emslie, M. J. et al. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia’s Great Barrier Reef. Mar. Biol. 159, 1293–1304 (2012).

    Article  Google Scholar 

  • 17.

    Glaser, M. et al. Breaking resilience for a sustainable future: thoughts for the Anthropocene. Front. Mar. Sci. 5, 34 (2018).

    Article  Google Scholar 

  • 18.

    Randazzo Eisemann, Á, Montero Muñoz, J. L., McField, M., Myton, J. & Arias-González, J. E. The effect of algal-gardening damselfish on the resilience of the Mesoamerican Reef. Front. Mar. Sci. 6, 414 (2019).

    Article  Google Scholar 

  • 19.

    Ceccarelli, D. M. et al. Long-term dynamics and drivers of coral and macroalgal cover on inshore reefs of the Great Barrier Reef Marine Park. Ecol. Appl. 30, e02008 (2020).

    PubMed  Article  Google Scholar 

  • 20.

    Kaufman, L. The three spot damselfish: effects on benthic biota of Caribbean coral reefs. InProceedings of the Third International Coral Reef Symposium1, 559–564 (1977).

  • 21.

    Kaufman, L. There was biological disturbance on Pleistocene coral reefs. Paleobiology 7, 527–532 (1981).

    Article  Google Scholar 

  • 22.

    Jones, G. P., Santana, L., McCook, L. J. & McCormick, M. I. Resource use and impact of three herbivorous damselfishes on coral reef communities. Mar. Ecol. Prog. Ser. 328, 215–224 (2006).

    ADS  Article  Google Scholar 

  • 23.

    Raymundo, L. J. et al. Coral Disease Handbook: Guidelines for Assessment, Monitoring & Management. (Coral Reef Targeted Research and Capacity Building for Management Program, 2008).

  • 24.

    Bruckner, A. & Bruckner, R. Mechanical lesions and corallivory. In Diseases of Coral (eds Woodley, C. et al.) 242–265 (Wiley, New York, 2016).

    Google Scholar 

  • 25.

    Hata, H. & Kato, M. Monoculture and mixed-species algal farms on a coral reef are maintained through intensive and extensive management by damselfishes. J. Exp. Mar. Biol. Ecol. 313, 285–296 (2004).

    Article  Google Scholar 

  • 26.

    Hata, H. & Kato, M. Weeding by the herbivorous damselfish Stegastes nigricans in nearly monocultural algae farms. Mar. Ecol. Prog. Ser. 237, 227–231 (2002).

    ADS  Article  Google Scholar 

  • 27.

    Hata, H. & Kato, M. Demise of monocultural algal farms by exclusion of territorial damselfish. Mar. Ecol. Prog. Ser. 263, 159–167 (2003).

    ADS  Article  Google Scholar 

  • 28.

    Pruitt, J. N. et al. Collective aggressiveness of an ecosystem engineer is associated with coral recovery. Behav. Ecol. 29, 1216–1224 (2018).

    Google Scholar 

  • 29.

    Kamath, A. et al. Potential feedback between coral presence and farmerfish collective behavior promotes coral recovery. Oikos 128, 482–492 (2019).

    Article  Google Scholar 

  • 30.

    Gochfeld, D. J. Territorial damselfishes facilitate survival of corals by providing an associational defense against predators. Mar. Ecol. Prog. Ser. 398, 137–148 (2010).

    ADS  Article  Google Scholar 

  • 31.

    Biodiversity Center of Japan. Monitoring Sites 1000 Annual Reports: the Coral Reefs. (Biodiversity Center of Japan, 2019).

  • 32.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 33.

    Titlyanov, E. A., Titlyanova, T. V., Yakovleva, I. M. & Sergeeva, O. S. Three stages of injuries regeneration on scleractinian corals. Galaxea 8, 39–50 (2006).

    Article  Google Scholar 

  • 34.

    Titlyanov, E. A. & Titlyanova, T. V. Coral–algal competition on damaged reefs. Russ. J. Mar. Biol. 34, 199–219 (2008).

    Article  Google Scholar 

  • 35.

    Titlyanov, E. A., Titlyanova, T. V. & Chapman, D. J. Dynamics and patterns of algal colonization on mechanically damaged and dead colonies of the coral Porites lutea. Bot. Mar. 51, 285–296 (2008).

    Article  Google Scholar 

  • 36.

    White, J. S. & O’Donnell, J. L. Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species. Ecology 91, 3538–3548 (2010).

    PubMed  Article  Google Scholar 

  • 37.

    Gleason, M. G. Coral recruitment in Moorea, French Polynesia: the importance of patch type and temporal variation. J. Exp. Mar. Biol. Ecol. 207, 79–101 (1996).

    Article  Google Scholar 

  • 38.

    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).

    ADS  Article  Google Scholar 

  • 39.

    Letourneur, Y., Harmelin-Vivien, M. & Galzin, R. Impact of Hurricane Firinga on fish community structure on fringing reefs of Reunion Island SW Indian Ocean. Environ. Biol. Fishes 37, 109–120 (1993).

    Article  Google Scholar 

  • 40.

    Sammarco, P. W. & Carleton, J. H. Damselfish territoriality and coral community structure: reduced grazing, coral recruitment, and effects on coral spat. In Proceedings of the 4h International Coral Reef Symposium2, 525–535 (1981).

  • 41.

    Letourneur, Y. Spatial and temporal variability in territoriality of a tropical benthic damselfish on a coral reef (Réunion island). Environ. Biol. Fishes 57, 377–391 (2000).

    Article  Google Scholar 

  • 42.

    Klumpp, D. W., McKinnon, D. & Daniel, P. Damselfish territories: zones of high productivity on coral reefs. Mar. Ecol. Prog. Ser. 40, 41–51 (1987).

    ADS  Article  Google Scholar 

  • 43.

    Letourneur, Y., Galzin, R. & Harmelin-Vivien, M. Temporal variations in the diet of the damselfish Stegastes nigricans (Lacépède) on a Réunion fringing reef. J. Exp. Mar. Biol. Ecol. 217, 1–18 (1997).

    Article  Google Scholar 

  • 44.

    Schopmeyer, S. A. & Lirman, D. Occupation dynamics and impacts of damselfish territoriality on recovering populations of the threatened staghorn coral, Acropora cervicornis. PLoS ONE 10, e0141302 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Sammarco, P. W., Risk, M. J. & Rose, C. Effects of grazing and damselfish territoriality on intertidal bioerosion of dead corals: indirect effects. J. Exp. Mar. Biol. Ecol. 112, 185–199 (1987).

    Article  Google Scholar 

  • 46.

    Strömberg, H. & Kvarnemo, C. Effects of territorial damselfish on cryptic bioeroding organisms on dead Acropora formosa. J. Exp. Mar. Biol. Ecol. 327, 91–102 (2005).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Validating the physics behind the new MIT-designed fusion experiment

    Utilizing conductivity of seawater for bioelectric measurement of fish