in

Heterogeneous leaves of predominant trees species enhance decomposition and nutrient release in the riparian zone of the Three Gorges Reservoir

  • 1.

    Fu, B. et al. Three Gorges Project: efforts and challenges for the environment. Prog. Phys. Geog. 34, 741–754 (2010).

    Article  Google Scholar 

  • 2.

    Yuan, X. et al. The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities. Environ. Sci. Pollut. R. 20, 7092–7102 (2013).

    Article  Google Scholar 

  • 3.

    Xu, X., Tan, Y. & Yang, G. Environmental impact assessments of the Three Gorges Project in China: issues and interventions. Earth Sci. Rev. 124, 115–125 (2013).

    ADS  Article  Google Scholar 

  • 4.

    Zhang, Q. & Lou, Z. The environmental changes and mitigation actions in the Three Gorges Reservoir region China. Environ. Sci. Policy 14, 1132–1138 (2011).

    Article  Google Scholar 

  • 5.

    Huang, Y. et al. Nutrient estimation by HJ-1 satellite imagery of Xiangxi Bay, Three Gorges Reservoir China. Environ. Earth Sci. 75, 633 (2016).

    Article  CAS  Google Scholar 

  • 6.

    Willison, J. H. M., Li, R. & Yuan, X. Conservation and ecofriendly utilization of wetlands associated with the Three Gorges Reservoir. Environ. Sci. Pollut. R. 20, 6907–6916 (2013).

    Article  Google Scholar 

  • 7.

    Liu, L., Liu, D., Johnson, D. M., Yi, Z. & Huang, Y. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management. Water Res. 46, 2121–2130 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Ren, C., Wang, L., Zheng, B., Qian, J. & Ton, H. Ten-year change of total phosphorous pollution in the Min River, an upstream tributary of the Three Gorges Reservoir. Environ. Earth Sci. 75, 1015 (2016).

    Article  CAS  Google Scholar 

  • 9.

    Li, C., Zhong, Z., Geng, Y. & Schneider, R. Comparative studies on physiological and biochemical adaptation of Taxodium distichum and Taxodium ascendens seedlings to different soil water regimes. Plant Soil. 329, 481–494 (2010).

    CAS  Article  Google Scholar 

  • 10.

    Schoonover, J. E., Williard, K. W., Zaczek, J. J., Mangun, J. C. & Carver, A. D. Agricultural sedmient reduction by giant cane and forests riparian buffers. Water Air Soil Poll. 169, 303–315 (2006).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Wang, C., Li, C., Wei, H., Xie, Y. & Han, W. Effects of long-term periodic submergence on photosynthesis and growth of Taxodium distichum and Taxodium ascendens saplings in the hydro-fluctuation zone of the Three Gorges Reservoir of China. PLoS ONE 11, e162867 (2016).

    Google Scholar 

  • 12.

    Yang, F., Wang, Y. & Chan, Z. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir. PLoS ONE 9, e108725 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Ye, C., Cheng, X., Zhang, Y., Wang, Z. & Zhang, Q. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir China. Ecol. Eng. 38, 37–44 (2012).

    Article  Google Scholar 

  • 14.

    Capon, S. J. et al. Riparian ecosystems in the 21st century: hotspots for climate change adaptation?. Ecosystems 16, 359–381 (2013).

    Article  Google Scholar 

  • 15.

    Gregory, S. V., Swanson, F. J., McKee, W. A. & Cummins, K. W. An ecosystem perspective of riparian zones. Bioscience 41, 540–551 (1991).

    Article  Google Scholar 

  • 16.

    Zhang, M. et al. Leaf litter traits predominantly control litter decomposition in streams worldwide. Glob. Ecol. Biogeogr. 28, 1469–1486 (2019).

    Article  Google Scholar 

  • 17.

    Ferreira, V., Encalada, A. C. & Graça, M. A. S. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw. Sci. 31, 945–962 (2012).

    Article  Google Scholar 

  • 18.

    Jabiol, J. & Chauvet, E. Fungi are involved in the effects of litter mixtures on consumption by shredders. Freshw. Biol. 57, 1667–1677 (2012).

    Article  Google Scholar 

  • 19.

    Yang, Z., Liu, D., Ji, D. & Xiao, S. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Sci. China Technol. Sci. 53, 1114–1125 (2010).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Berglund, S. L. & Ågren, G. I. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121, 1112–1120 (2012).

    Article  Google Scholar 

  • 21.

    De Marco, A., Meola, A., Maisto, G., Giordano, M. & Virzo De Santo, A. Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant Soil 344, 305–317 (2011).

    CAS  Article  Google Scholar 

  • 22.

    Gartner, T. B. & Cardon, Z. G. Decomposition dynamics in mixed-species leaf litter. Oikos 104, 230–246 (2004).

    Article  Google Scholar 

  • 23.

    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    PubMed  Article  Google Scholar 

  • 24.

    Schimel, J. P. & Hättenschwiler, S. Nitrogen transfer between decomposing leaves of different N status. Soil Biol. Biochem. 39, 1428–1436 (2007).

    CAS  Article  Google Scholar 

  • 25.

    Lecerf, A. et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92, 160–169 (2011).

    Article  Google Scholar 

  • 26.

    Wu, D., Li, T. & Wan, S. Time and litter species composition affect litter-mixing effects on decomposition rates. Plant Soil. 371, 355–366 (2013).

    CAS  Article  Google Scholar 

  • 27.

    Swan, C. M., Healey, B. & Richardson, D. C. The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience 15, 27–35 (2008).

    Article  Google Scholar 

  • 28.

    Leroy, C. J. & Marks, J. C. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw. Biol. 51, 605–617 (2006).

    Article  Google Scholar 

  • 29.

    Xie, Y., Xie, Y., Hu, C., Chen, X. & Li, F. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes. J. Limnol. 75, 36–43 (2015).

    Google Scholar 

  • 30.

    Sun, Z., Mou, X. & Liu, J. S. Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China. Environ. Earth Sci. 66, 2235–2246 (2012).

    Article  Google Scholar 

  • 31.

    Wang, C., Xie, Y., Ren, Q. & Li, C. Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir China. Environ. Sci. Pollut. R. 25, 23261–23275 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Xiao, L., Zhu, B., Nsenga Kumvimba, M. & Jiang, S. Plant soaking decomposition as well as nitrogen and phosphorous release in the water-level fluctuation zone of the Three Gorges Reservoir. Sci. Total Environ. 592, 527–534 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 34.

    Bray, S. R., Kitajima, K. & Mack, M. C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 49, 30–37 (2012).

    CAS  Article  Google Scholar 

  • 35.

    Graça, M. A. S. et al. A conceptual model of litter breakdown in low order streams. Int. Rev. Hydrobiol. 100, 1–12 (2015).

    Article  CAS  Google Scholar 

  • 36.

    Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M. O. & Chauvet, E. Decomposition of diverse litter mixtures in streams. Ecology 88, 219–227 (2007).

    Article  Google Scholar 

  • 37.

    Martínez, A., Larrañaga, A., Pérez, J., Descals, E. & Pozo, J. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol. Ecol. 87, 257–267 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 38.

    Kelley, R. H. & Jack, J. D. Leaf litter decomposition in an ephemeral karst lake (Chaney Lake, Kentucky, U.S.A). Hydrobiologia 482, 41–47 (2002).

    Article  Google Scholar 

  • 39.

    Austin, A. T. & Vitousek, P. M. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J. Ecol. 88, 138–139 (2000).

    Article  Google Scholar 

  • 40.

    Taylor, A. R., Schröter, D., Pflug, A. & Wolters, V. Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Glob. Change Biol. 10, 1313–1324 (2004).

    ADS  Article  Google Scholar 

  • 41.

    Xie, Y., Xie, Y., Xiao, H., Chen, X. & Li, F. Controls on litter decomposition of emergent macrophyte in dongting lake wetlands. Ecosystems 20, 1383–1389 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Fernandes, I., Seena, S., Pascoal, C. & Cássio, F. Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshw. Biol. 59, 2390–2399 (2014).

    CAS  Article  Google Scholar 

  • 43.

    Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17, 551–564 (2011).

    ADS  Article  Google Scholar 

  • 44.

    Liu, C. et al. Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in southwestern China. Soil Biol. Biochem. 101, 44–54 (2016).

    Article  CAS  Google Scholar 

  • 45.

    Wu, F. et al. Admixture of alder (Alnus formosana) litter can improve the decomposition of eucalyptus (Eucalyptus grandis) litter. Soil Biol. Biochem. 73, 115–121 (2014).

    CAS  Article  Google Scholar 

  • 46.

    Kominoski, J. S. et al. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a Detritus-based stream. Ecology 88, 1167–1176 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Sanpera-Calbet, I. S. I. S., Lecerf, A. & Chauvet, E. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshw. Biol. 54, 1671–1682 (2009).

    Article  Google Scholar 

  • 48.

    Ostrofsky, M. L. A comment on the use of exponential decay models to test nonadditive processing hypotheses in multispecies mixtures of litter. J. N. Am. Benthol. Soc. 26, 23–27 (2007).

    Article  Google Scholar 

  • 49.

    Zanne, A. E. et al. A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. J. Ecol. 103, 1421–1431 (2015).

    CAS  Article  Google Scholar 

  • 50.

    Hieber, M. & Gessner, M. O. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83, 1026–1038 (2002).

    Article  Google Scholar 

  • 51.

    Schindler, M. H. & Gessner, M. O. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90, 1641–1649 (2009).

    PubMed  Article  Google Scholar 

  • 52.

    Gessner, M. O. & Chauvet, E. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75, 1807–1817 (1994).

    Article  Google Scholar 

  • 53.

    Sommaruga, R., Crosa, D. & Mazzeo, N. Study on the Decomposition of Pistia stratiotes L. (Araceae) in Cisne Reservoir, Uruguay. Hydrobiologia 78, 263–272 (1993).

    CAS  Google Scholar 

  • 54.

    Fraser, L. H., Carty, S. M. & Steer, D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour. Technol. 94, 185–192 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Ball, B. A., Bradford, M. A. & Hunter, M. D. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems 12, 87–100 (2009).

    CAS  Article  Google Scholar 

  • 56.

    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2), 322–331 (1963).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference