in

Hidden Markov Models reveal a clear human footprint on the movements of highly mobile African wild dogs

  • 1.

    Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 5.

    Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 114, 528–533 (2017).

    CAS  Article  Google Scholar 

  • 6.

    6Woodroffe, R. & Sillero Zubiri, C. Lycaon pictus. The IUCN Red List of Threatened Species. e.T12436A16711116 (Gland, Switzerland, 2012).

  • 7.

    Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2013).

    Article  Google Scholar 

  • 8.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).

    Google Scholar 

  • 9.

    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42, 3–16 (1991).

    Article  Google Scholar 

  • 10.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. 105, 20770 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Kareiva, P. Habitat fragmentation and the stability of predator–prey interactions. Nature 326, 388–390 (1987).

    ADS  Article  Google Scholar 

  • 13.

    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in Neotropical landbirds. Am. Nat. 140, 447–476 (1992).

    Article  Google Scholar 

  • 14.

    Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).

    Article  Google Scholar 

  • 15.

    Durant, S. M. Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti. Behav. Ecol. 11, 624–632 (2000).

    Article  Google Scholar 

  • 16.

    Creel, S. & Creel, N. M. Limitation of African wild dogs by competition with larger carnivores. Conserv. Biol. 10, 526–538 (1996).

    Article  Google Scholar 

  • 17.

    Creel, S. & Creel, N. M. The African wild dog: Behavior, ecology and conservation (Princeton University Press, Princeton, 2002).

    Google Scholar 

  • 18.

    Swanson, A. et al. Cheetahs and wild dogs show contrasting patterns of suppression by lions. J. Anim. Ecol. 83, 1418–1427 (2014).

    Article  Google Scholar 

  • 19.

    Dröge, E., Creel, S., Becker, M. S. & Msoka, J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol. Evol. 7, 189–199 (2017).

    PubMed  Article  Google Scholar 

  • 20.

    Gorman, M. L., Mills, M. G., Raath, J. P. & Speakman, J. R. High hunting costs make African wild dogs vulnerable to kleptoparasitism by hyaenas. Nature 391, 479–481 (1998).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Broekhuis, F., Cozzi, G., Valeix, M., McNutt, J. W. & Macdonald, D. W. Risk avoidance in sympatric large carnivores: Reactive or predictive?. J. Anim. Ecol. 82, 1098–1105 (2013).

    Article  Google Scholar 

  • 22.

    Creel, S. et al. Carnivores, competition and genetic connectivity in the Anthropocene. Sci. Rep. 9, 16339. https://doi.org/10.1038/s41598-019-52904-0 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).

    Article  Google Scholar 

  • 24.

    Broekhuis, F. Natural and anthropogenic drivers of cub recruitment in a large carnivore. Ecol. Evol. 8, 6748–6755 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Broekhuis, F., Madsen, E. K. & Klaassen, B. Predators and pastoralists: how anthropogenic pressures inside wildlife areas influence carnivore space use and movement behaviour. Anim. Conserv. 22, 404–416. https://doi.org/10.1111/acv.12483 (2019).

    Article  Google Scholar 

  • 26.

    Klaassen, B. & Broekhuis, F. Living on the edge: Multiscale habitat selection by cheetahs in a human-wildlife landscape. Ecol. Evol. 8, 7611–7623 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Dolrenry, S., Stenglein, J., Hazzah, L., Lutz, R. S. & Frank, L. A metapopulation approach to African lion (Panthera leo) conservation. PLoS ONE 9, e88081 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Mills, M. G. & Gorman, M. L. Factors affecting the density and distribution of wild dogs in the Kruger National Park. Conserv. Biol. 11, 1397–1406 (1997).

    Article  Google Scholar 

  • 30.

    Fuller, T., Mills, M. L., Borner, M., Laurenson, M. & Kat, P. Long distance dispersal by African wild dogs in East and South Africa. Revue de zoologie africaine 106, 535–537 (1992).

    Google Scholar 

  • 31.

    Frame, L. H., Malcolm, J. R., Frame, G. W. & Van Lawick, H. Social organization of African Wild Dogs (Lycaon pictus) on the Serengeti Plains, Tanzania 1967–1978 1. Zeitschrift für Tierpsychologie 50, 225–249 (1979).

    Article  Google Scholar 

  • 32.

    Woodroffe, R. et al. Dispersal behaviour of African wild dogs in Kenya. Afr. J. Ecol. 58, 46–57 (2020).

    Article  Google Scholar 

  • 33.

    Creel, S. & Creel, N. M. Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim. Behav. 50, 1325–1339 (1995).

    Article  Google Scholar 

  • 34.

    Creel, S., Creel, N. M., Creel, A. & Creel, B. Hunting on a hot day: Effects of temoperature on interactions between African wild dogs and their prey. Ecology 97, 2910–2916 (2016).

    PubMed  MATH  Article  Google Scholar 

  • 35.

    Woodroffe, R. Ranging behaviour of African wild dog packs in a human-dominated landscape. J. Zool. 283, 88–97 (2011).

    Article  Google Scholar 

  • 36.

    Creel, S. Four factors modifying the effect of competition on carnivore population dynamics as illustrated by African wild dogs. Conserv. Biol. 15, 271–274 (2001).

    Article  Google Scholar 

  • 37.

    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Cushman, S. A., Elliot, N. B., Macdonald, D. W. & Loveridge, A. J. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc. Ecol. 31, 1337–1353 (2016).

    Article  Google Scholar 

  • 39.

    Short Bull, R. A. et al. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol. 20, 1092–1107 (2011).

    Article  Google Scholar 

  • 40.

    Zeller, K. A. et al. Using step and path selection functions for estimating resistance to movement: Pumas as a case study. Landsc. Ecol. 31, 1319–1335 (2016).

    Article  Google Scholar 

  • 41.

    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51, 1169–1178 (2014).

    Article  Google Scholar 

  • 42.

    Oriol-Cotterill, A., Macdonald, D. W., Valeix, M., Ekwanga, S. & Frank, L. G. Spatiotemporal patterns of lion space use in a human-dominated landscape. Anim. Behav. 101, 27–39 (2015).

    Article  Google Scholar 

  • 43.

    Cozzi, G. et al. African Wild dog dispersal and implications for management. J. Wildl. Manag. 84, 614–621 (2020).

    Article  Google Scholar 

  • 44.

    Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity. J. Anim. Ecol. 82, 707–715 (2013).

    PubMed  Article  Google Scholar 

  • 45.

    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).

    Article  Google Scholar 

  • 46.

    Whittington-Jones, B. M., Parker, D. M., Bernard, R. T. & Davies-Mostert, H. T. Habitat selection by transient African wild dogs (Lycaon pictus) in northern KwaZulu-Natal, South Africa: Implications for range expansion. South Afr. J. Wildlife Res. 44, 135–147 (2011).

    Article  Google Scholar 

  • 47.

    47Becker, M. Zambian Carnivore Programme 2019 Annual Report. 40 (Zambian Carnivore Programme, Mfuwe, Zambia, 2020).

  • 48.

    Abrahms, B. et al. Lessons from integrating behaviour and resource selection: activity-specific responses of African wild dogs to roads. Anim. Conserv. 19, 247–255 (2016).

    Article  Google Scholar 

  • 49.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    van Beest, F. M. et al. Classifying grey seal behaviour in relation to environmental variability and commercial fishing activity-a multivariate hidden Markov model. Sci. Rep. 9, 1–14 (2019).

    Article  CAS  Google Scholar 

  • 53.

    McClintock, B. T. & Michelot, T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol. Evol. 9, 1518–1530 (2018).

    Article  Google Scholar 

  • 54.

    Michelot, T., Langrock, R. & Patterson, T. A. moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol. Evol. 7, 1308–1315 (2016).

    Article  Google Scholar 

  • 55.

    Langrock, R. et al. Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology 93, 2336–2342 (2012).

    PubMed  Article  Google Scholar 

  • 56.

    Zucchini, W., MacDonald, I. L. & Langrock, R. Hidden Markov models for time series: an introduction using R (CRC Press, Boca Raton, 2017).

    Google Scholar 

  • 57.

    57DNPW. National Conservation Action Plan for Cheetah and African Wild Dog for Zambia, 2019–2023. (Zambia Department of National Parks and WIldlife, Chilanga, Zambia, 2019).

  • 58.

    Chomba, C., Mwenya, A. N. & Nyirenda, N. Wildlife legislation and institutional reforms in Zambia for the period 1912–2011. J. Sustain. Dev. Afr. 13, 2 (2011).

    Google Scholar 

  • 59.

    Astle, W., Webster, R. & Lawrance, C. Land classification for management planning in the Luangwa Valley of Zambia. J. Appl. Ecol. 6, 143–169 (1969).

    Article  Google Scholar 

  • 60.

    Rosenblatt, E. et al. Detecting declines of apex carnivores and evaluating their causes: An example with Zambian lions. Biol. Cons. 180, 176–186 (2014).

    Article  Google Scholar 

  • 61.

    Rosenblatt, E. et al. Effects of a protection gradient on carnivore density and survival: An example with leopards in the Luangwa valley Zambia. Ecol. Evol. 6, 3772–3785 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Rosenblatt, E. et al. Do protection gradients explain patterns in herbivore densities? An example with ungulates in Zambia’s Luangwa Valley. PLoS ONE 14, e0224438. https://doi.org/10.1371/journal.pone.0224438 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Watson, F. G., Becker, M. S., Milanzi, J. & Nyirenda, M. Human encroachment into protected area networks in Zambia: Implications for large carnivore conservation. Reg. Environ. Change 15, 415–429 (2015).

    Article  Google Scholar 

  • 64.

    Watson, F., Becker, M. S., McRobb, R. & Kanyembo, B. Spatial patterns of wire-snare poaching: Implications for community conservation in buffer zones around National Parks. Biol. Cons. 168, 1–9 (2013).

    Article  Google Scholar 

  • 65.

    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139. https://doi.org/10.1080/20964471.2019.1625151 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Creel, S. et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Cons. 232, 164–172 (2019).

    Article  Google Scholar 

  • 67.

    67Masenga, E. H. Behavioural ecology of free-ranging and reintroduced African wild dog (Lycaon pictus) packs in the Serengeti ecosystem, Tanzania PhD thesis, Norwegian University of Science and Technology, (2017).

  • 68.

    Marsden, C. D. et al. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). Mol. Ecol. 21, 1379–1393 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Becker, M. Zambian Carnivore Programme 2016 Annual Report (Mfuwe, Zambia, 2016).

    Google Scholar 

  • 70.

    momentuHMM: R package for analysis of telemetry data using generalized multivariate hidden Markov models of animal movement (CRAN, Vienna, Austria, 2020).


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization