in

High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing

  • 1.

    Sato, T., Ikeda, O., Yamakoshi, Y. & Tsubouchi, M. X-ray tomography for microstructural objects. Appl. Opt. 20, 3880–3883 (1981).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Elliott, J. C. & Dover, S. D. X-ray microtomography. J. Microsc. 126, 211–213 (1982).

    CAS  PubMed  Google Scholar 

  • 3.

    Elliott, J. C. & Dover, S. D. X-ray microscopy using computerized axial tomography. J. Microsc. 138, 329–331 (1985).

    CAS  PubMed  Google Scholar 

  • 4.

    Sutton, M., Rahman, I. & Garwood, R. Techniques for Virtual Palaeontology 208 (Wiley-Blackwell, London, 2014).

    Google Scholar 

  • 5.

    Davies, T. G. et al. Open data and digital morphology. Proc. R. Soc. B 284, 20170194 (2017).

    PubMed  Google Scholar 

  • 6.

    Gutiérrez, Y., Ott, D., Töpperwien, M., Salditt, T. & Scherber, C. X-ray computed tomography and its potential in ecological research: a review of studies and optimization of specimen preparation. Ecol. Evol. 8, 7717–7732 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Ketcham, R. A. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 32–41 (2005).

    ADS  Google Scholar 

  • 9.

    Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).

    Google Scholar 

  • 10.

    Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T. & Arvanitidis, C. Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263, 1–45 (2013).

    Google Scholar 

  • 11.

    Akkari, N. et al. New avatars for Myriapods: complete 3D morphology of type specimens transcends conventional species description (Myriapoda, Chilopoda). PLoS ONE 13, 0200158. https://doi.org/10.1371/journal.pone.0200158 (2018).

    CAS  Article  Google Scholar 

  • 12.

    Fontaine, B., Perrard, A. & Bouchet, P. 21 years of shelf life between discovery and description of new species. Curr. Biol. 22, R943–R944 (2012).

    CAS  PubMed  Google Scholar 

  • 13.

    Hipsley, C. A. & Sherratt, E. Psychology, not technology, is our biggest challenge to open digital morphology data. Sci. Data. 6, 41 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Blagoderov, V., Kitching, I. J., Livermore, L., Simonsen, T. J. & Smith, V. S. No specimen left behind: industrial scale digitization of natural history collections. Zookeys 209, 133–146 (2012).

    Google Scholar 

  • 15.

    Rogers, N. Museum drawers go digital. Science 352, 762–765 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170386 (2018).

    Google Scholar 

  • 17.

    Schmitt, C. J., Cook, J. A., Zamudio, K. R. & Edwards, S. V. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170387 (2018).

    Google Scholar 

  • 18.

    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).

    Google Scholar 

  • 19.

    Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl. Acad. Sci. 116, 14688–14697 (2019).

    CAS  PubMed  Google Scholar 

  • 20.

    Simon, M. N., Machado, F. A. & Marroig, G. High evolutionary constraints limited adaptive responses to past climate changes in toad skulls. Proc. R. Soc. B-Biol. Sci. 283, 20161783 (2016).

    Google Scholar 

  • 21.

    Sherratt, E., Serb, J. M. & Adams, D. C. Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol. Biol. 17, 248 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Percival, C. J. et al. The effect of automated landmark identification on morphometric analyses. J. Anat. 234, 917–935 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro –computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).

    Google Scholar 

  • 25.

    Broeckhoven, C. & du Plessis, A. X-ray microtomography in herpetological research: a review. Amphibia-Reptilia 39, 377–401 (2018).

    Google Scholar 

  • 26.

    Marcy, A. E., Fruciano, C., Phillips, M. J., Mardon, K. & Weisbecker, V. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ 6, 5032. https://doi.org/10.7717/peerj.5032 (2018).

    Article  Google Scholar 

  • 27.

    Gray, J. A., McDowell, M. C., Hutchinson, M. N. & Jones, M. E. Geometric morphometrics provides an alternative approach for interpreting the affinity of fossil lizard jaws. J. Herpetol. 51, 375–382 (2017).

    Google Scholar 

  • 28.

    Thorn, K. M., Hutchinson, M. N., Archer, M. & Lee, M. S. Y. A new scincid lizard from the Miocene of northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae). J. Vertebr. Paleontol. 39, 1 (2019).

    Google Scholar 

  • 29.

    Chaplin, K., Sumner, J., Hipsley, C. A. & Melville, J. An integrative approach using phylogenomics and high-resolution X-ray computed tomography for species delimitation in cryptic taxa. Syst. Biol. 69, syz048. https://doi.org/10.1093/sysbio/syz048 (2019).

    Article  Google Scholar 

  • 30.

    Melville, J. et al. Integrating phylogeography and high-resolution X-ray CT reveals five new cryptic species and multiple hybrid zones among Australian earless dragons. R. Soc. Open Sci. 6, 191166. https://doi.org/10.1098/rsos.191166 (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Caro, A., Gómez-Moliner, B. J. & Madeira, M. J. Integrating multilocus DNA data and 3D geometric morphometrics to elucidate species boundaries in the case of Pyrenaearia (Pulmonata: Hygromiidae). Mol. Phylogenet. Evol. 132, 194–206 (2019).

    CAS  PubMed  Google Scholar 

  • 32.

    Winkelmann, C. T. & Wise, L. D. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J. Pharmacol. Tox. Met. 59, 156–165 (2009).

    CAS  Google Scholar 

  • 33.

    Sevilla, R. S. et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis. Bone 73, 32–41 (2015).

    PubMed  Google Scholar 

  • 34.

    Wong, M. D., Maezawa, Y., Lerch, J. P. & Henkelman, R. M. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT. Development 141, 2533–2541 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Wu, D. et al. Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J. Exp. Bot. 70, 545–561 (2019).

    CAS  PubMed  Google Scholar 

  • 36.

    Ding, Y. et al. Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. Elife 8, 44898. https://doi.org/10.7554/eLife.44898.001 (2019).

    Article  Google Scholar 

  • 37.

    Staedtler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, 75295. https://doi.org/10.1371/journal.pone.0075295 (2013).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Keklikoglou, K. et al. Micro-computed tomography for natural history specimens: a handbook of best practice protocols. Eur. J. Taxon. 522, 1–55 (2019).

    Google Scholar 

  • 39.

    Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).

  • 40.

    Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).

    PubMed  Google Scholar 

  • 41.

    du Plessis, A., Broeckhoven, C., Guelpa, A. & le Roux, S. G. Laboratory X-ray micro-computed tomography: a user guideline for biological samples. Gigascience 6, 1–11 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Hocknull, S. A., Zhao, J. X., Feng, Y. X. & Webb, G. E. Responses of middle Pleistocene rainforest vertebrates to climate change in Australia. Earth Planet. Sci. Lett. 264, 317–331 (2007).

    ADS  CAS  Google Scholar 

  • 43.

    Hedrick, B. P. et al. Digitization and the future of natural history collections. Bioscience 70, 243–251 (2020).

    Google Scholar 

  • 44.

    Lawrence, R. A. & Hocknull, S. Engaging the public with small vertebrate fossils and utilizing citizen science to maximise scientific discovery at Capricorn Caves, Central Eastern Queensland, Australia. J. Vertebr. Paleontol. Program Abstr. 139 (2019).

  • 45.

    Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Arbour, J. H., Curtis, A. A. & Santana, S. E. Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats. Nat. Commun. 10, 2036 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Park, T., Fitzgerald, E. M. & Evans, A. R. Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12, 20160060. https://doi.org/10.1098/rsbl.2016.0060 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Müller, J. et al. Eocene lizard from Germany reveals amphisbaenian origins. Nature 473, 364–367 (2011).

    ADS  PubMed  Google Scholar 

  • 49.

    Miralles, A. et al. Distinct patterns of desynchronized limb regression in Malagasy scincine lizards (Squamata, Scincidae). PLoS ONE 10, 0126074. https://doi.org/10.1371/journal.pone.0126074 (2015).

    CAS  Article  Google Scholar 

  • 50.

    Weisbecker, V. Monotreme ossification sequences and the riddle of mammalian skeletal development. Evolution 65, 1323–1335 (2011).

    PubMed  Google Scholar 

  • 51.

    Newton, A. H. et al. Letting the ‘cat’ out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography. R. Soc. Open Sci. 5, 171914. https://doi.org/10.1098/rsos.171914 (2018).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Beaudet, A. & Gilissen, E. Fossil primate endocasts: perspectives from advanced imaging techniques In Digital Endocasts: from Skulls to Brains (eds. Bruner, E., Ogihara, N. & Tanabe, H.) 47–58 (Springer, Berlin, 2018).

  • 54.

    Wulff, N. C., Lehmann, A. W., Hipsley, C. A. & Lehmann, G. U. C. Copulatory courtship by bushcricket genital titillators revealed by functional morphology, μCT scanning for 3D reconstruction and female sense structures. Arthropod Struct. Dev. 44, 388–397 (2015).

    PubMed  Google Scholar 

  • 55.

    Gee, C. T. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: a virtual advantage over thin-sectioning. Appl. Plant Sci. 1, 1300039. https://doi.org/10.3732/apps.1300039 (2013).

    Article  Google Scholar 

  • 56.

    Meyer, M. et al. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res. 249, 79–87 (2014).

    ADS  CAS  Google Scholar 

  • 57.

    Gooday, A. J., Sykes, D., Goral, T., Zubkov, M. V. & Glover, A. G. Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista, Foraminifera) from the eastern equatorial Pacific Ocean. Sci. Rep. 8, 12103. https://doi.org/10.1038/s41598-018-30186-2 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Dunlop, J. A. et al. Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus. BMC Evol. Biol. 16, 203 (2016).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial