in

Host density and habitat structure influence host contact rates and Batrachochytrium salamandrivorans transmission

  • 1.

    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying Threats to Imperiled Species in the United States. Bioscience 48, 607–615 (1998).

    • Article
    • Google Scholar
  • 2.

    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science (80−). 306, 1783–1786 (2004).

  • 3.

    Griffiths, R. A. & Pavajeau, L. Captive breeding, reintroduction, and the conservation of amphibians. Conservation Biology 22, 852–861 (2008).

  • 4.

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population declines. Diversity and Distributions 9, 141–150 (2003).

    • Article
    • Google Scholar
  • 5.

    Daszak, P. et al. Emerging infectious diseases and amphibian population declines. Emerg. Infect. Dis. 5, 735–748 (1999).

  • 6.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science (80−). 363, 1459–1463 (2019).

  • 7.

    Fenichel, E. P., Horan, R. D. & Hickling, G. J. Management of infectious wildlife diseases: Bridging conventional and bioeconomic approaches. Ecol. Appl. 20, 903–914 (2010).

  • 8.

    Grant, E. H. C. et al. Using decision analysis to support proactive management of emerging infectious wildlife diseases. Front. Ecol. Environ. 15, 214–221 (2017).

    • Article
    • Google Scholar
  • 9.

    Gray, M. J. et al. Pathogen Surveillance in Herpetofaunal Populations: Guidance on Study Design, Sample Collection, Biosecurity, and Intervention Strategies. Herpetol. Rev. 48, 334–351 (2017).

    • Google Scholar
  • 10.

    Langwig, K. E. et al. Context-dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment 13, 195–202 (2015).

    • Article
    • Google Scholar
  • 11.

    Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101, 6146–6151 (2004).

  • 12.

    World Bank. PEOPLE, PATHOGENS AND OUR PLANET Volume 2 – The Economics of One Health. The World Bank 2, (2012).

  • 13.

    Voyles, J. et al. Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. Ecohealth 12, 404–407 (2014).

  • 14.

    Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA 95, 9031–9036 (1998).

  • 15.

    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376–378 (2011).

  • 16.

    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science (80−). 346, 630–631 (2014).

  • 17.

    Yap, T. A., Nguyen, N. T., Serr, M., Shepack, A. & Vredenburg, V. T. Batrachochytrium salamandrivorans and the Risk of a Second Amphibian Pandemic. EcoHealth 14, 851–864 (2017).

  • 18.

    Stegen, G. et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544, 353–356 (2017).

  • 19.

    Berger, L. et al. History and recent progress on chytridiomycosis in amphibians. Fungal Ecol. 19, 89–99 (2016).

    • Article
    • Google Scholar
  • 20.

    Feldmeier, S. et al. Exploring the distribution of the spreading lethal salamander chytrid fungus in its invasive range in Europe – A macroecological approach. Plos One 11 (2016).

  • 21.

    Spitzen-van der Sluijs, A. et al. Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe. Emerg. Infect. Dis. 22, 1286–1288 (2016).

  • 22.

    Sabino-Pinto, J. et al. First detection of the emerging fungal pathogen Batrachochytrium salamandrivorans in Germany. Amphib. Reptil. 36, 411–416 (2015).

    • Article
    • Google Scholar
  • 23.

    Fitzpatrick, L. D., Pasmans, F., Martel, A. & Cunningham, A. A. Epidemiological tracing of Batrachochytrium salamandrivorans identifies widespread infection and associated mortalities in private amphibian collections. Sci. Rep. 8 (2018).

  • 24.

    Cunningham, A. A. et al. Surveillance: Emerging disease in UK amphibians. Vet. Rec. 176, 468 (2015).

  • 25.

    Nguyen, T. T., Nguyen, T. V., Ziegler, T., Pasmans, F. & Martel, A. Trade in wild anurans vectors the urodelan pathogen Batrachochytrium salamandrivorans into. Europe. Amphib. Reptil. 38, 554–556 (2017).

    • Article
    • Google Scholar
  • 26.

    Grant, E. H. C. et al. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies. Open-File Rep., https://doi.org/10.3133/ofr20151233 (2016).

  • 27.

    Richgels, K. L. D., Russell, R. E., Adams, M. J., White, C. L. & Grant, E. H. C. Spatial variation in risk and consequence of Batrachochytrium introduction in the USA Subject Areas: R. Soc. open sci. (2016).

  • 28.

    Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B. & Vredenburg, V. T. Averting a North American biodiversity crisis: A newly described pathogen poses a major threat to salamanders via trade. Science (80−). 349, 481–482 (2015).

  • 29.

    Schmidt, B. R., Bozzuto, C., Lötters, S. & Steinfartz, S. Dynamics of host populations affected by the emerging fungal pathogen Batrachochytrium salamandrivorans. R. Soc. Open Sci. 4 (2017).

  • 30.

    Alcobendas, M., Dopazo, H. & Alberch, P. Geographic variation in allozymes of populations of Salamandra salamandra (Amphibia: Urodela) exhibiting distinct reproductive modes. J. Evol. Biol. 9, 83–102 (1996).

    • Article
    • Google Scholar
  • 31.

    Scott, D. E. & Petranka, J. W. Salamanders of the United States and Canada. Copeia 1999, 845 (1999).

    • Article
    • Google Scholar
  • 32.

    Niemiller, M. & Reynolds, R. The Amphibians of Tennessee. Choice Rev. Online 49, 49-5058–49–5058 (2012).

    • Google Scholar
  • 33.

    Longo, A. V., Fleischer, R. C. & Lips, K. R. Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts. Biol. Invasions 21, 2233–2245 (2019).

    • Article
    • Google Scholar
  • 34.

    Penczykowski, R. M., Hall, S. R., Civitello, D. J. & Duffy, M. A. Habitat structure and ecological drivers of disease. Limnol. Oceanogr. 59, 340–348 (2014).

  • 35.

    Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. USA 107, 9695–9700 (2010).

  • 36.

    Greer, A. L., Briggs, C. J. & Collins, J. P. Testing a key assumption of host-pathogen theory: Density and disease transmission. Oikos 117, 1667–1673 (2008).

    • Article
    • Google Scholar
  • 37.

    Echaubard, P., Little, K., Pauli, B. & Lesbarréres, D. Context-dependent effects of ranaviral infection on northern leopard frog life history traits. Plos One 5 (2010).

  • 38.

    Rachowicz, L. J. & Briggs, C. J. Quantifying the disease transmission function: Effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. J. Anim. Ecol. 76, 711–721 (2007).

  • 39.

    Kjær, L. J., Schauber, E. M. & Nielsen, C. K. Spatial and Temporal Analysis of Contact Rates in Female White-Tailed Deer. J. Wildl. Manage. 72, 1819–1825 (2008).

    • Article
    • Google Scholar
  • 40.

    Greer, A. L. & Collins, J. P. Habitat fragmentation as a result of biotic and abiotic factors controls pathogen transmission throughout a host population. J. Anim. Ecol. 77, 364–369 (2008).

  • 41.

    Habib, T. J., Merrill, E. H., Pybus, M. J. & Coltman, D. W. Modelling landscape effects on density-contact rate relationships of deer in eastern Alberta: Implications for chronic wasting disease. Ecol. Modell. 222, 2722–2732 (2011).

    • Article
    • Google Scholar
  • 42.

    Anderson, R. M. & May, R. M. (Robert M. Infectious diseases of humans: dynamics and control. (Oxford University Press, 1991).

  • 43.

    Brunner, J. L., Schock, D. M. & Collins, J. P. Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Dis. Aquat. Organ. 77, 87–95 (2007).

  • 44.

    Quinn, T. C. et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. N. Engl. J. Med. 342, 921–929 (2000).

  • 45.

    Canessa, S. et al. Decision-making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians. J. Appl. Ecol. 55, 1987–1996 (2018).

    • Article
    • Google Scholar
  • 46.

    Klous, G., Huss, A., Heederik, D. J. J. & Coutinho, R. A. Human-livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature. One Health 2, 65–76 (2016).

  • 47.

    Islam, R. Gray, M. J. & Peace, A. Identifying the Dominant transmission pathway in a multi-stage infection model of the Emerging Fungal Pathogen Batrachochytrium salamandrivorans on the Eastern Newt. Math. Planet Earth (Infectious Dis. Our Planet), Springer, New York (2020, in press).

  • 48.

    Healy, W. R. Population Consequences of Alternative Life Histories in Notophthalmus v. viridescens. Copeia 1974, 221 (1974).

    • Article
    • Google Scholar
  • 49.

    Gill, D. E. The Metapopulation Ecology of the Red-Spotted Newt, Notophthalmus viridescens (Rafinesque). Ecol. Monogr. 48, 145–166 (1978).

    • Article
    • Google Scholar
  • 50.

    Roe, A. W. & Grayson, K. L. Terrestrial Movements and Habitat Use of Juvenile and Emigrating Adult Eastern Red-Spotted Newts, Notophthalmus Viridescens. J. Herpetol. 42, 22–30 (2008).

    • Article
    • Google Scholar
  • 51.

    Wells, K. D. The Ecology and Behavior of Amphibians. The Ecology and Behavior of Amphibians, https://doi.org/10.7208/chicago/9780226893334.001.0001 (2013).

  • 52.

    Becker, C. G. & Zamudio, K. R. Tropical amphibian populations experience higher disease risk in natural habitats. Proc. Natl. Acad. Sci. USA 108, 9893–9898 (2011).

  • 53.

    Thrall, P. H., Antonovics, J. & Hall, D. W. Host and pathogen coexistence in sexually transmitted and vector- borne diseases characterized by frequency-dependent disease transmission. Am. Nat. 142, 543–552 (1993).

    • Article
    • Google Scholar
  • 54.

    Getz, W. M. & Pickering, J. Epidemic Models: Thresholds and Population Regulation. Am. Nat. 121, 892–898 (1983).

    • Article
    • Google Scholar
  • 55.

    Antonovics, J., Iwasa, Y. & Hassell, M. P. A generalized model of parasitoid, venereal, and vector-based transmission processes. Am. Nat. 145, 661–675 (1995).

    • Article
    • Google Scholar
  • 56.

    Thomas, V. et al. Mitigating Batrachochytrium salamandrivorans in Europe. Amphibia Reptilia 40, 265–290 (2019).

    • Article
    • Google Scholar
  • 57.

    Canessa, S., Bozzuto, C., Pasmans, F. & Martel, A. Quantifying the burden of managing wildlife diseases in multiple host species. Conserv. Biol., cobi.13313, https://doi.org/10.1111/cobi.13313 (2019).

  • 58.

    Schmutzer, A. Influences of Cattle on Community Structure and Pathogen Prevalence in Larval Amphibians on the Cumberland Plateau, Tennessee. Masters Theses (2007).

  • 59.

    Bozzuto, C. & Canessa, S. Impact of seasonal cycles on host-pathogen dynamics and disease mitigation for Batrachochytrium salamandrivorans. Glob. Ecol. Conserv. 17 (2019).

  • 60.

    Fisher, M. C. Ecology: In peril from a perfect pathogen. Nature 544, 300–301 (2017).

  • 61.

    Wilber, M. Q., Knapp, R. A., Toothman, M. & Briggs, C. J. Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease. Ecology Letters 20, 1169–1181 (2017).

  • 62.

    Bletz, M. C. et al. Disruption of skin microbiota contributes to salamander disease. Proceedings. Biol. Sci. 285 (2018).

  • 63.

    Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing Amphibian Disease with Skin Microbiota. Trends in Microbiology 24, 161–164 (2016).

  • 64.

    Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 110, 15325–15329 (2013).

  • 65.

    Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Veterinary Research 46 (2015).

  • 66.

    Carter, E. D. et al. Conservation risk of Batrachochytrium salamandrivorans to endemic lungless salamanders. Conserv. Lett., https://doi.org/10.1111/conl.12675 (2019).

  • 67.

    Klocke, B. et al. Batrachochytrium salamandrivorans not detected in U.S. survey of pet salamanders. Scientific Reports 7 (2017).

  • 68.

    Gray, M. J. et al. Batrachochytrium salamandrivorans: The North American Response and a Call for Action. PLoS Pathogens 11 (2015).

  • 69.

    Schloegel, L. M., Daszak, P., Cunningham, A. A., Speare, R. & Hill, B. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): An assessment. Dis. Aquat. Organ. 92, 101–108 (2010).

  • 70.

    Harris, R., Alford, R. & Wilbur, H. Are there jobs for all in the shipping industry? Herpetologica 44, 8 (1988).

    • Google Scholar
  • 71.

    Morin, P. J. Competitive and Predatory Interactions in Natural and Experimental Populations of Notophthalmus viridescens dorsalis and Ambystoma tigrinum. Copeia 1983, 628 (1983).

    • Article
    • Google Scholar
  • 72.

    Morin, P. J., Wilbur, H. M. & Harris, R. N. Salamander predation and the structure of experimental communities: responses of Notophthalmus and microcrustacea. Ecology 64, 1430–1436 (1983).

    • Article
    • Google Scholar
  • 73.

    Bletz, M. Probiotic bioaugmentation of an anti-Bd bacteria, Janthinobacterium lividum, on the amphibian, Notophthalmus viridescens: Transmission efficacy and persistence of the probiotic on the host and non-target effects of probiotic addition on ecosystem componen. Masters Theses (2013).

  • 74.

    Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004).

  • 75.

    Blooi, M. et al. Duplex real-Time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J. Clin. Microbiol. 51, 4173–4177 (2013).

  • 76.

    Girden, E. R. ANOVA: repeated measures. (Sage Publications, 1992).

  • 77.

    Hayter, A. J. A Proof of the Conjecture that the Tukey-Kramer Multiple Comparisons Procedure is Conservative. Ann. Stat. 12, 61–75 (1984).

  • 78.

    Jager, K. J., Van Dijk, P. C., Zoccali, C. & Dekker, F. W. The analysis of survival data: The Kaplan-Meier method. Kidney Int. 74, 560–565 (2008).

  • 79.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (2015).

  • 80.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical Journal 50, 346–363 (2008).

  • 81.

    Fordyce, J. A., Gompert, Z., Forister, M. L. & Nice, C. C. A hierarchical bayesian approach to ecological count data: A flexible tool for ecologists. Plos One 6 (2011).

  • 82.

    Kot, M. Elements of mathematical ecology. Choice Reviews Online 39, (Cambridge University Press, 2002).


  • Source: Ecology - nature.com

    The effect of phylogeographic history on species boundaries: a comparative framework in Hyla tree frogs

    The bits of wire that can devastate lion populations