in

Human practices promote presence and abundance of disease-transmitting mosquito species

  • 1.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science348, 1217 (2015).

    ADS  PubMed  Google Scholar 

  • 2.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature574, 671–674 (2019).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science (80).349, 1259504 (2015).

    Article  Google Scholar 

  • 4.

    Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr.9, 54 (2010).

    Article  Google Scholar 

  • 5.

    Muturi, E. J., Costanzo, K., Kesavaraju, B., Lampman, R. & Alto, B. W. Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Acta Trop.116, 141–146 (2010).

    CAS  Article  Google Scholar 

  • 6.

    Krol, L. et al. Eutrophication mediates consequences of predator-prey interactions and temperature for Aedes aegypti. Parasit. Vectors12, 179 (2019).

    Article  Google Scholar 

  • 7.

    Samuel, M., Brooke, B. D. & Oliver, S. V. Effects of inorganic fertilizer on larval development, adult longevity and insecticide susceptibility in the malaria vector Anopheles arabiensis (Diptera: Culicidae). Pest Manag. Sci. https://doi.org/10.1002/ps.5676 (2020).

    Article  PubMed  Google Scholar 

  • 8.

    Jeanrenaud, A. C. S. N., Brooke, B. D. & Oliver, S. V. The effects of larval organic fertiliser exposure on the larval development, adult longevity and insecticide tolerance of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). PLoS ONE https://doi.org/10.1371/journal.pone.0215552 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Roche, B., Rohani, P., Dobson, A. P. & Guégan, J.-F. The impact of community organization on vector-borne pathogens. Am. Nat.181, 1–11 (2012).

    Article  Google Scholar 

  • 10.

    Lord, J. S. et al. Sampling design influences the observed dominance of Culex tritaeniorhynchus: considerations for future studies of japanese encephalitis virus transmission. PLoS Negl. Trop. Dis. https://doi.org/10.1371/journal.pntd.0004249 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Takahashi, M. The effects of environmental and physiological conditions of Culex tritaeniorhynchus on the pattern of transmission of Japanese encephalitis virus. J. Med. Entomol. https://doi.org/10.1093/jmedent/13.3.275 (1976).

    Article  PubMed  Google Scholar 

  • 12.

    Hauser, G., Thiévent, K. & Koella, J. C. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae. Parasit. Vectors https://doi.org/10.1186/s13071-020-3983-9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Reiskind, M. H. & Lounibos, L. P. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med. Vet. Entomol. https://doi.org/10.1111/j.1365-2915.2008.00782.x (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis.19, 302–312 (2019).

    Article  Google Scholar 

  • 15.

    Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl. Acad. Sci.116, 3624–3629 (2019).

    CAS  Article  Google Scholar 

  • 16.

    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis.5, (2011).

  • 17.

    Patz, J. A. & Olson, S. H. Malaria risk and temperature: influences from global climate change and local land use practices. Proc. Natl. Acad. Sci. USA103, 5635–5636 (2006).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Afrane, Y. A., Githeko, A. K. & Yan, G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/j.1749-6632.2011.06432.x (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis.11, e0005640 (2017).

    Article  Google Scholar 

  • 20.

    Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis.67, 25–35 (2018).

    Article  Google Scholar 

  • 21.

    Beck-Johnson, L. M. et al. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. R. Soc. Open Sci.4, 160969 (2017).

    ADS  Article  Google Scholar 

  • 22.

    Johnson, M. F., Gómez, A. & Pinedo-Vasquez, M. Land use and mosquito diversity in the Peruvian amazon. J. Med. Entomol. https://doi.org/10.1603/0022-2585(2008)45[1023:luamdi]2.0.co;2 (2008).

    Article  PubMed  Google Scholar 

  • 23.

    Versteirt, V. et al. Nationwide inventory of mosquito biodiversity (Diptera: Culicidae) in Belgium Europe. Bull. Entomol. Res. https://doi.org/10.1017/S0007485312000521 (2013).

    Article  PubMed  Google Scholar 

  • 24.

    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep.6, 29002 (2016).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Ibañez-Justicia, A., Stroo, A., Dik, M., Beeuwkes, J. & Scholte, E. J. National mosquito (Diptera: Culicidae) survey in the Netherlands 2010–2013. J. Med. Entomol. https://doi.org/10.1093/jme/tju058 (2015).

    Article  PubMed  Google Scholar 

  • 26.

    Johnson, T., Braack, L., Guarido, M., Venter, M. & Gouveia Almeida, A. P. Mosquito community composition and abundance at contrasting sites in northern South Africa, 2014–2017. J. Vector Ecol. https://doi.org/10.1111/jvec.12378 (2020).

    Article  PubMed  Google Scholar 

  • 27.

    Cornel, A. J. et al. Mosquito community composition in South Africa and some neighboring countries. Parasit. Vectors https://doi.org/10.1186/s13071-018-2824-6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Sedda, L. et al. Improved spatial ecological sampling using open data and standardization: an example from malaria mosquito surveillance. J. R. Soc. Interface https://doi.org/10.1098/rsif.2018.0941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Thongsripong, P. et al. Mosquito vector diversity across habitats in central thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl. Trop. Dis.7, e2507 (2013).

    Article  Google Scholar 

  • 30.

    Meyer Steiger, D. B., Ritchie, S. A. & Laurance, S. G. W. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasit. Vectors9, (2016).

  • 31.

    Gorsich, E. E. et al. A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa. Parasit. Vectors12, 462 (2019).

    Article  Google Scholar 

  • 32.

    Braack, L., Gouveia De Almeida, A. P., Cornel, A. J., Swanepoel, R., & De Jager, C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit. Vectors11, (2018).

  • 33.

    Do Manh, C. et al. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malar. J. https://doi.org/10.1186/1475-2875-9-259 (2010).

    Article  PubMed Central  Google Scholar 

  • 34.

    Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2017.09.012 (2018).

    Article  Google Scholar 

  • 35.

    Barros, F. S. M. & Honório, N. A. Deforestation and malaria on the amazon frontier: larval clustering of anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.15-0042 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature468, 647–652 (2010).

    ADS  CAS  Article  Google Scholar 

  • 37.

    MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA.116, 22212–22218 (2019).

    CAS  Article  Google Scholar 

  • 38.

    Wiens, J. A. Ecological Flows Across Landscape Boundaries: A Conceptual Overview. In Landscape boundaries (eds. Hansen, A. J. & di Castri, F.) 217–235 (Springer, 1992).

  • 39.

    Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2008.06.006 (2008).

    Article  Google Scholar 

  • 40.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology https://doi.org/10.1890/07-1206.1 (2008).

    Article  PubMed  Google Scholar 

  • 41.

    Mabidi, A., Bird, M. S. & Perissinotto, R. Distribution and diversity of aquatic macroinvertebrate assemblages in a semiarid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS ONE12, e0178559 (2017).

    Article  Google Scholar 

  • 42.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol.18, 117–143 (1993).

    Article  Google Scholar 

  • 43.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–2. Cran R (2019).

  • 44.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming

    MIT researchers and Wyoming representatives explore energy and climate solutions