in

Hunting strategies to increase detection of chronic wasting disease in cervids

  • 1.

    Wasserberg, G., Osnas, E. E., Rolley, R. E. & Samuel, M. D. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. J. Appl. Ecol. 46, 457–466 (2009).

    PubMed  Google Scholar 

  • 2.

    Heberlein, T. A. “Fire in the Sistine Chapel”: How Wisconsin responded to chronic wasting disease. Hum. Dimens Wildl. 9, 165–179 (2004).

    Google Scholar 

  • 3.

    Donnelly, C. A. & Woodroffe, R. Badger-cull targets unlikely to reduce TB. Nature 526, 640 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Turner, W. C. et al. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. Lond. Ser. B 281, https://doi.org/10.1098/rspb.2014.1785 (2014).

  • 5.

    Uehlinger, F. D., Johnston, A. C., Bollinger, T. K. & Waldner, C. L. Systematic review of management strategies to control chronic wasting disease in wild deer populations in North America. BMC Vet. Res. 12, 1–16 (2016).

    Google Scholar 

  • 6.

    Tildesley, M. J., Bessell, P. R., Keeling, M. J. & Woolhouse, M. E. J. The role of pre-emptive culling in the control of foot-and-mouth disease. Proc. R. Soc. Lond. Ser. B 276, 3239 (2009).

    Google Scholar 

  • 7.

    te Beest, D. E., Hagenaars, T. J., Stegeman, J. A., Koopmans, M. P. & van Boven, M. Risk based culling for highly infectious diseases of livestock. Vet. Res. 42, 81 (2011).

    Google Scholar 

  • 8.

    Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 88 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).

    CAS  PubMed  Google Scholar 

  • 10.

    USGS. Expanding Distribution of Chronic Wasting Disease https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (USGS, 2019).

  • 11.

    Edmunds, D. R. et al. Chronic wasting disease drives population decline of white-tailed deer. PLoS ONE 11, e0161127 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    DeVivo, M. T. et al. Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS ONE 12, e0186512 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Mysterud, A. & Rolandsen, C. M. A reindeer cull to prevent chronic wasting disease in Europe. Nat. Ecol. Evol. 2, 1343–1345 (2018).

    PubMed  Google Scholar 

  • 14.

    V. K. M. Ytrehus, et al. Factors that can Contribute to Spread of CWD—An Update on the Situation in Nordfjella, Norway (Opinion of the Panel on biological hazards. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway, 2018).

  • 15.

    Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Change Biol. 15, 2626–2633 (2009).

    ADS  Google Scholar 

  • 16.

    Diefenbach, D. R., Rosenberry, C. S. & Boyd, R. C. From the field: efficacy of detecting chronic wasting disease via sampling hunter-killed white-tailed deer. Wildl. Soc. Bull. 32, 267–272 (2004).

    Google Scholar 

  • 17.

    Rees, E. E. et al. Targeting the detection of chronic wasting disease using the hunter harvest during early phases of an outbreak in Saskatchewan, Canada. Prev. Vet. Med. 104, 149–159 (2012).

    PubMed  Google Scholar 

  • 18.

    Belsare, A. V. et al. An agent-based framework for improving wildlife disease surveillance: a case study of chronic wasting disease in Missouri white-tailed deer. Ecol. Model. 417, 108919 (2020).

    Google Scholar 

  • 19.

    Walsh, D. P. & Miller, M. W. A weighted surveillance approach for detecting chronic wasting disease foci. J. Wildl. Dis. 46, 118–135 (2010).

    PubMed  Google Scholar 

  • 20.

    Heisey, D. M. et al. Linking process to pattern: estimating spatiotemporal dynamics of a wildlife epidemic from cross-sectional data. Ecol. Monogr. 80, 221–240 (2010).

    Google Scholar 

  • 21.

    Miller, M. W. & Conner, M. M. Epidemiology of chronic wasting disease in free-ranging mule deer: Spatial, temporal, and demographic influences on observed prevalence patterns. J. Wildl. Dis. 41, 275–290 (2005).

    PubMed  Google Scholar 

  • 22.

    Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: infection, mortality, and implications for heterogeneous transmission. Ecol. 97, 3195–3205 (2016).

    Google Scholar 

  • 23.

    Mysterud, A., Coulson, T. & Stenseth, N. C. The role of males in the population dynamics of ungulates. J. Anim. Ecol. 71, 907–915 (2002).

    Google Scholar 

  • 24.

    Ginsberg, J. R. & Milner-Gulland, E. J. Sex biased harvesting and population dynamics in ungulates: implications for conservation and sustainable use. Cons. Biol. 8, 157–166 (1994).

    Google Scholar 

  • 25.

    Milner-Gulland, E. J., Coulson, T. N. & Clutton-Brock, T. H. On harvesting a structured ungulate population. Oikos 88, 592–602 (2000).

    Google Scholar 

  • 26.

    Stärk, K. D. C. et al. Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: review of current approaches. BMC Health Serv. Res. 6, 20 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Martin, P. A., Cameron, A. R. & Greiner, M. Demonstrating freedom from disease using multiple complex data sources. Prev. Vet. Med. 79, 71–97 (2007).

    CAS  PubMed  Google Scholar 

  • 28.

    Cannon, R. M. Demonstrating disease freedom-combining confidence levels. Prev. Vet. Med. 52, 227–249 (2002).

    CAS  PubMed  Google Scholar 

  • 29.

    Sutherland, W. J. et al. A 2018 horizon scan of emerging Issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).

    PubMed  Google Scholar 

  • 30.

    EFSA Panel on Biological Hazards (BIOHAZ), Ricci, A. et al. Chronic wasting disease (CWD) in cervids. EFSA J. 15, 4667 (2016).

    Google Scholar 

  • 31.

    Vicente, J. et al. Science-based wildlife disease response. Science 364, 943 (2019).

    ADS  PubMed  Google Scholar 

  • 32.

    Schalk, G. & Forbes, M. R. Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 67–74 (1997).

    Google Scholar 

  • 33.

    Córdoba-Aguilar, A. & Munguía-Steyer, R. The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. Plos One 8, e76246 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Milner-Gulland, E. J. et al. Reproductive collapse in saiga antelope harems. Nature 422, 135 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Sargeant, G. A., Weber, D. C. & Roddy, D. E. Implications of chronic wasting disease, cougar predation, and reduced recruitment for elk management. J. Wildl. Manag. 75, 171–177 (2011).

    Google Scholar 

  • 36.

    Monello, R. J. et al. Survival and population growth of a free-ranging elk population with a long history of exposure to Chronic wasting disease. J. Wildl. Manag. 78, 214–223 (2014).

    Google Scholar 

  • 37.

    Argue, C. K., Ribble, C., Lees, V. W., McLane, J. & Balachandran, A. Epidemiology of an outbreak of chronic wasting disease on elk farms in Saskatchewan. Can. Vet. J. 48, 1241–1248 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Delahay, R. J. Smith, G. C. & Hutchings, M. R. Management of Disease in Wild Mammals (Springer, Tokyo, Japan, 2009).

  • 39.

    Almberg, E. S., Cross, P. C., Johnson, C. J., Heisey, D. M. & Richards, B. J. Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS ONE 6, e19896 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Keeling, M. J. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B 266, 859–867 (1999).

    CAS  Google Scholar 

  • 41.

    Joly, D. O., Samuel, M. D., Langenberg, J. A., Rolley, R. E. & Keane, D. P. Surveillance to detect chronic wasting disease in white-tailed deer in Wisconsin. J. Wildl. Dis. 45, 989–997 (2009).

    PubMed  Google Scholar 

  • 42.

    Nusser, S. M., Clark, W. R., Otis, D. L. & Huang, L. Sampling considerations for disease surveillance in wildlife populations. J. Wildl. Manag. 72, 52–60 (2008).

    Google Scholar 

  • 43.

    Osnas, E. E., Heisey, D. M., Rolley, R. E. & Samuel, M. D. Spatial and temporal patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in Wisconsin. Ecol. Appl. 19, 1311–1322 (2009).

    PubMed  Google Scholar 

  • 44.

    Samuel, M. D. et al. Surveillance strategies for detecting chronic wasting disease in free-ranging deer and elk – results of a CWD surveillance workshop. https://pubs.er.usgs.gov/publication/70006758 (U.S. Geological Survey Conference publication, Madison, WI, 2003).

  • 45.

    Spraker, T. R. et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 33, 1–6 (1997).

    CAS  PubMed  Google Scholar 

  • 46.

    Panzacchi, M. et al. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. J. Anim. Ecol. 85, 32–42 (2015).

    PubMed  Google Scholar 

  • 47.

    Ziller, M., Selhorst, T., Teuffert, J., Kramer, M. & Schlüter, H. Analysis of sampling strategies to substantiate freedom from disease in large areas. Prev. Vet. Med. 52, 333–343 (2002).

    CAS  PubMed  Google Scholar 

  • 48.

    Jongman, R. H. G. Homogenisation and fragmentation of the European landscape: ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).

    Google Scholar 

  • 49.

    Holand, Ø. et al. The effect of sex ratio and male age structure on reindeer calving. J. Wildl. Manag. 67, 25–33 (2003).

    Google Scholar 

  • 50.

    Sæther, B.-E., Solberg, E. J. & Heim, M. Effects of altering sex ratio structure on the demography of an isolated moose population. J. Wildl. Manag. 67, 455–466 (2003).

    Google Scholar 

  • 51.

    Morina, D. L., Demarais, S., Strickland, B. K. & Larson, J. E. While males fight, females choose: male phenotypic quality informs female mate choice in mammals. Anim. Behav. 138, 69–74 (2018).

    Google Scholar 

  • 52.

    Bro-Jørgensen, J. Overt female competition and preference for central males in a lekking antelope. Proc. Natl Acad. Sci. USA 99, 9290–9293 (2002).

    ADS  PubMed  Google Scholar 

  • 53.

    Andres, D. et al. Sex differences in the consequences of maternal loss in a long-lived mammal, the red deer (Cervus elaphus). Behav. Ecol. Sociobiol. 67, 1249–1258 (2013).

    Google Scholar 

  • 54.

    Ericsson, G. Reduced cost of reproduction in moose Alces alces through human harvest. Alces 37, 61–69 (2001).

    Google Scholar 

  • 55.

    Apollonio, M. Andersen, R. & Putman, R. European Ungulates and their Management in the 21st Century (Cambridge University Press, Cambridge, 2010).

  • 56.

    Mawson, P. R., Hampton, J. O. & Dooley, B. Subsidized commercial harvesting for cost-effective wildlife management in urban areas: a case study with kangaroo sharpshooting. Wildl. Soc. Bull. 40, 251–260 (2016).

    Google Scholar 

  • 57.

    Manjerovic, M. B., Green, M. L., Mateus-Pinilla, N. & Novakofski, J. The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations. Prev. Vet. Med. 113, 139–145 (2014).

    PubMed  Google Scholar 

  • 58.

    Mateus-Pinilla, N., Weng, H. Y., Ruiz, M. O., Shelton, P. & Novakofski, J. Evaluation of a wild white-tailed deer population management program for controlling chronic wasting disease in Illinois, 2003-2008. Prev. Vet. Med. 110, 541–548 (2013).

    PubMed  Google Scholar 

  • 59.

    Vaske, J. J. Lessons learned from human dimensions of chronic wasting disease research. Hum. Dimens Wildl. 15, 165–179 (2010).

    Google Scholar 

  • 60.

    Mysterud, A., Strand, O. & Rolandsen, C. M. Efficacy of recreational hunters and marksmen for host culling to combat chronic wasting disease in reindeer. Wildl. Soc. Bull. 43, 683–692 (2019).

    Google Scholar 

  • 61.

    Gaydos, D. A., Petrasova, A., Cobb, R. C. & Meentemeyer, R. K. Forecasting and control of emerging infectious forest disease through participatory modelling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180283 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Strand, O., Nilsen, E. B., Solberg, E. J. & Linnell, J. D. C. Can management regulate the population size of wild reindeer (Rangifer tarandus) through harvest? Can. J. Zool. 90, 163–171 (2012).

    Google Scholar 

  • 63.

    Nilsen, E. B. & Strand, O. Integrating data from several sources for increased insight into demographic processes: Simulation studies and proof of concept for hierarchical change in ratio models. PLoS ONE 13, e0194566 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Viljugrein, H. et al. A method that accounts for differential detectability in mixed samples of long-term infections with applications to the case of chronic wasting disease in cervids. Methods Ecol. Evol. 10, 134–145 (2019).

    Google Scholar 

  • 65.

    Mysterud, A. et al. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 10, e02931 (2019).

    Google Scholar 

  • 66.

    MacDiarmid, S. C. A theoretical basis for the use of a skin test for brucellosis surveillance in extensively-managed cattle herds. Rev. Sci. Tech. Int Epiz 6, 1029–1035 (1987).

    CAS  Google Scholar 

  • 67.

    Viljugrein, H. Accompanying Code for the Paper “Hunting Wildlife to Increase Disease Detection” Version v1.0.0, August 4-2020) https://doi.org/10.5281/zenodo.3972037 (Zenodo, 2020).


  • Source: Ecology - nature.com

    Six strategic areas identified for shared faculty hiring in computing

    Weather and biotic interactions as determinants of seasonal shifts in abundance measured through nest-box occupancy in the Siberian flying squirrel