in

Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome

  • 1.

    Salinas-Moreno, Y. et al. Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. J. Biogeogr. 31, 1163–1177 (2004).

    Article  Google Scholar 

  • 2.

    Salinas-Moreno, Y., Ager, A., Vargas, C. F., Hayes, J. L. & Zúñiga, G. Determining the vulnerability of Mexican pine forest to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecol. Manag. 260, 52–61 (2010).

    Article  Google Scholar 

  • 3.

    FAO. 2009. The impacts of climate change on forest health. Preprint at https://www.fao.org/3/a-k3837s.pdf (2016).

  • 4.

    Cervantes-Martínez, R. et al. Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1895–2015) and their relationship with droughts. Rev. Chapingo Serie Ciencias Forestales y del Ambiente. 25, 269–290 (2019).

  • 5.

    Byers, J. Chemical ecology of bark beetles in a complex olfactory landscape. in Bark and wood boring insects in living trees in Europe, a synthesis (eds. Lieutier, F., Day, K.R., Battisti, A., Grégoire, J. C. & Evans H. F.) 89–134 (Springer, 2007).

  • 6.

    Raffa, K. F., Andersson M. N. & Schlyter, F. Host selection by bark beetles: playing the odds in a high-stakes game. in Advances in insect physiology, pine bark beetles (eds. Tittiger, C. & Bloquist, G. J.) 1–74 (Oxford, 2016).

  • 7.

    Bakke, A. Using pheromones in the management of bark beetle outbreaks. In Forest insects guild: patterns of interaction with host trees. (eds. Baranchikov, Y. N., Mattson, W. J., Hain, F. P. & Payne, T. L.) 371–377 (U.S.D.A. Forest Service, 1991).

  • 8.

    Galko, J. et al. Effectiveness of pheromone traps for the European spruce bark beetle: a comparative study of four commercial products and two new models. Lesn. Cas. For. J. 62, 207–215 (2016).

    Google Scholar 

  • 9.

    Suwannapong, C. & Benbow, M. E. Sources of insect odors: pheromone glands and odor production. in The biology of odors: sources, olfaction and response. (eds. Logan, E. W. & Atwood, J. M.) 153–184 (Nova Science Publishers, 2011).

  • 10.

    Hansson, S. B. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Sachse, S. & Krieger, J. Olfaction in insects: the primary processes of odor recognition and coding. E-Neuroforum. 2, 49–60 (2011).

    Google Scholar 

  • 12.

    Leal, W. S. Pheromone reception. Top. Curr. Chem. 240, 1–36 (2005).

    CAS  Google Scholar 

  • 13.

    Pelosi, P., Zhou, J.-J., Ban, L. P. & Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63, 1658–1676 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Leal, W. S. Odorant Reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Gómez-Díaz, C., Martín, F., García-Fernandez, J. M. & Alcorta, E. The two main olfactory receptor families in Drosophila, ORs and IRs: a comparative approach. Front. Cell. Neurosci. 12, 253. https://doi.org/10.3389/fncel.2018.00253 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Depetris-Chauvin, A., Galagovsky, D. & Grosjean, Y. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. Front. Ecol. Evol. 3, 41. https://doi.org/10.3389/fevo.2015.00041 (2015).

    Article  Google Scholar 

  • 17.

    Pelosi, P., Iovinella, I., Felicioli, A. & Dani, F. R. Soluble proteins of chemical communication: an overview across arthropods. Frontiers in Physiology. 5, 1–13 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–295 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Pelosi, P., Calvello, M. & Ban. L. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem. Senses. 30, 291–292 (2005).

  • 20.

    Tegoni, M., Campanacci, V. & Cambillau, C. Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci. 29, 257–264 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Zhou, J.-J. Odorant-binding proteins in insects. Pheromones. 83, 241–272. https://doi.org/10.1016/s0083-6729(10)83010-9 (2010).

    CAS  Article  Google Scholar 

  • 22.

    Sánchez-Gracia, A., Vieira, G. F. & Rozas, J. Molecular evolution of the major chemosensory gene families in insects. Heredity 103, 208–216 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 23.

    Kulmuni, J. & Havukainen, H. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS ONE 8, e63688. https://doi.org/10.1371/journal.pone.0063688 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Pelosi, P., Iovinella, I., Zhu, J., Wang, G. & Dani, F. R. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 93, 184–200 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Dani, F. R. et al. Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem. Senses 36, 335–344 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Gu, S.-H. et al. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics. 14, 636 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Zhang, Y.-N. et al. Identification and expression profiles of sex pheromone biosynthesis and transport related genes in Spodoptera litura. PLoS ONE 10, e0140019. https://doi.org/10.1371/journal.pone.0140019 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Nagnan-Le, M. P. et al. Chemosensory proteins from the proboscis of Mamestra brassicae. Chem. Senses 25, 541–553 (2000).

    Article  Google Scholar 

  • 29.

    Zhu, J. et al. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. International Journal of Biological Sciences. 11, 1394–1404 (2016).

    Article  CAS  Google Scholar 

  • 30.

    Liu, G. et al. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE 11, e0154706. https://doi.org/10.1371/journal.pone.0154706 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Bautista, M. A. et al. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Manag. Sci. 71, 423–432 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Vogt, R. G. et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 39, 448–456 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Jiang, X., Pregitzer, P., Grosse-Wilde, E., Breer, H. & Krieger, J. Identification and characterization of two “sensory neuron membrane proteins” (SNMPs) of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J. Insect Sci. 16, 1–10 (2016).

    Article  CAS  Google Scholar 

  • 34.

    Zhang, G., Chen, F. J., Wang, L. G. & Zhang, J. Characterization and levels of expression of sensory neuron membrane proteins in the adult citrus fuit fly (Diptera: Tephritidae). J. Insect Sci. 18, 1–8. https://doi.org/10.1093/jisesa/iey117 (2018).

    ADS  CAS  Article  PubMed Central  Google Scholar 

  • 35.

    Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA 105, 10996–11001 (2018).

    ADS  Article  Google Scholar 

  • 36.

    Zhang, J., Liu, Y., Walker, W. B., Dong, S.-L. & Wang, G.-R. Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 22, 399–408 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 37.

    Zhou, J.-J., Field, L. M. & Li, X. Insect odorant-binding proteins: do they offer an alternative pest control strategy?. Outlooks Pest Manag. 21, 31–34 (2010).

    CAS  Article  Google Scholar 

  • 38.

    Venthur, H. & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis. Chemosensory Targets for Insect Control. 9, 1–16 (2018).

    Google Scholar 

  • 39.

    Lu, Y. et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens. Bioelectron. 67, 662–669. https://doi.org/10.1016/j.bios.2014.09.098 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Yi, X. et al. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein. Int. J. Biol. Sci. 11, 75–87. https://doi.org/10.7150/ijbs.9872 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Plettner, E. Insect pheromone olfaction: new targets for the design of species-selective pest control agents. Curr. Med. Chem. 9, 1075–1085 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Devillers, J. In Computational design of chemicals for the control of mosquitoes and their diseases (ed. Devillers, J.) 25–468 (CRC Press, Boca Raton, 2018).

    Google Scholar 

  • 43.

    Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J. & Leal, W. S. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J. Chem. Ecol. 36, 245–248 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252. https://doi.org/10.3389/fphys.2018.00252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Andersson, N. M. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 198 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Gu, X.-C., Zhang, Y.-N., Kang, K., Dong, S.-L. & Zhang, L.-W. Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB) Dendroctonus valens. PLoS ONE 10, e0125159. https://doi.org/10.1371/journal.pone.0125159 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Zhu, J.-Y., Zhao, N. & Yang, B. Global transcriptome profiling of the pine shoot beetle Tomicus yunnanensis (Coleoptera: Scolytinae). PLoS ONE 7, e32291. https://doi.org/10.1371/journal.pone.0032291 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Yi, J.-K. et al. Identification of candidate chemosensory receptors in the antennal transcriptome of the large black chafer Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). Comp. Biochem. Physiol. 28, 63–71 (2018).

    CAS  Google Scholar 

  • 49.

    Hu, P., Wang, J., Cui, M., Tao, J. & Luo, Y. Antennal transcriptome analysis of the asian longhorned beetle Anoplophora glabripennis. Sci. Rep. 6, 26652. https://doi.org/10.1038/srep26652 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Chen, H., Lin, L., Xie, M., Zhang, G. & Su, W. D. novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae). PLoS ONE 9, e114238. https://doi.org/10.1371/journal.pone.0114238 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Dippel, S. et al. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomic 15, 1141 (2014).

    Article  Google Scholar 

  • 52.

    Oppenheim, J. S., Baker, H. R., Simon, S. & DeSalle, R. We can’t all be supermodels: the value of comparative transcriptomics to the study of non-model insects. Insect Mol. Biol. 24, 139–215 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Keeling, C. et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins a major forest pest. Genome Biol. 14, R27. https://doi.org/10.1186/gb-2013-14-3-r27 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Goldman-Huertas, B. et al. Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc. Natl. Acad. Sci. USA 112, 3026–3031. https://doi.org/10.1073/pnas.1424656112 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Zhou, X. et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930. https://doi.org/10.1371/journal.pgen.1002930 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Lavagnino, N., Serra, F., Arbiza, L., Dopazo, H. & Hasson, E. Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evol Bioinform. 8, 89–104. https://doi.org/10.4137/EBO.S8484 (2012).

    Article  Google Scholar 

  • 57.

    Fan, J., Francis, F., Lim, Y., Chen, J. L. & Cheng, D. F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 10, 3056–3069 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58

    Zhou, J.-J. Odorant-binding proteins in insects. In Vitamins and hormones (ed. Litwack, G.) (Academic Press, Cambridge, 2010).

    Google Scholar 

  • 59.

    Gu, S.-H. et al. Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Sci. Rep. 5, 13800. https://doi.org/10.1038/srep13800 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Zhang, S., Zhang, Z., Kong, X., Wang, H. & Liu, F. Dynamic changes in chemosensory gene expression during the Dendrolimus punctatus mating process. Front. Physiol. 8, 1127. https://doi.org/10.3389/fphys.2017.01127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Wang, Y., Chen, Q., Zhao, H. & Ren, B. Identification and comparison of candidate olfactory genes in the olfactory and non-olfactory organs of elm pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) based on transcriptome analysis. PLoS ONE 11, e0147144. https://doi.org/10.1371/journal.Pone.0147144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Xu, Y.-L. et al. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics 10, 632 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Vogt, R. G. & Riddiford, L. M. Pheromone binding and inactivation by moth antennae. Nature 293, 161–163 (1981).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Nikonov, A. A., Peng, G., Tsurupa, G. & Leal, W. S. Unisex pheromone detectors and pheromone-binding proteins in Scarab beetles. Chem. Senses 27, 495–504 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65

    Oliveira, D. S. et al. Functional characterization of odorant binding protein 27 (RproOBP27) from Rhodnius prolixus antennae. Front. Physiol. 9, 1175. https://doi.org/10.3389/fphys.2018.01175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Li, Z. et al. Identification, expression patterns, and functional characterization of chemosensory proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front. Physiol. 9, 291. https://doi.org/10.3389/fphys.2018.00291 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Langeswaran, K., Jeyaraman, J., Mariadasse, R. & Soorangkattan, S. Insights from the molecular modeling, docking analysis of illicit drugs and bomb compounds with honey bee odorant binding proteins (OBPs). Bioinformation 14, 219–231 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Jayanthi, K. P. et al. Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics 15, 209. https://doi.org/10.1186/1471-2164-15-209 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Vieira, F. G. & Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476–490 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Li, Z.-Q. et al. Two minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J. Insect Physiol. 59, 263–272 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Spinelli, S. et al. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem. Mol. Biol. 42, 41–50 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Zheng, Z.-C. et al. Predicted structure of a minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs. Sci. Rep. 6, 33981. https://doi.org/10.1038/srep33981 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    Li, Z.-Q., He, P., Zhang, Y.-N. & Dong, S.-L. Molecular and functional characterization of three odorant-binding protein from Periplaneta americana. PLoS ONE 12, e0170072. https://doi.org/10.1371/journal.pone.0170072 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Li, D.-Z. et al. Structure-Based analysis of the ligand-binding mechanism for DhelOBP21, a c-minus odorant binding protein, from Dastarcus helophoroides Fairmaire (Coleoptera: Bothrideridae). Int. J. Biol. Sci. 11, 1281–1295 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Zhou, J.-J., Huangb, W., Zhang, G.-A., Picketta, J. A. & Fielda, L. M. ‘Plus-C’’ odorant binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327, 117–212 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76

    Song, Y.-Q., Sun, H.-Z. & Du, J. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant(Hemiptera: Lygaeidae). Sci. Rep. 8, 7803. https://doi.org/10.1038/s41598-018-26137-6 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Mei, T., Fu, W.-B., Li, B., He, Z.-B. & Chen, B. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization and evolution. PLoS ONE 13, e0190412. https://doi.org/10.1371/journal.pone.0190412 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Nichols, Z. & Vogt, R. G. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 398–415 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Forstner, M. et al. Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses 33, 291–299. https://doi.org/10.1093/chemse/bjm087 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Gu, S.-H. et al. Molecular identification and differential ex- pression of sensory neuron membrane proteins in the antennae of the black cutworm moth Agrotis ipsilon. J. Insect Physiol. 59, 430–443 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Wu, Z. et al. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 20, 646. https://doi.org/10.1186/s12864-019-6022-5 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Liu, C., Zhang, J., Liu, Y., Wang, G. & Dong, S. Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (HÜBNER). Arch. Insect Biochem. Physiol. 85, 114–126 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Tateno, Y. et al. Evolutionary motif and its biological and structural significance. J. Mol. Evol. 44, S38–S43 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Armendáriz-Toledano, F. & Zuñiga, G. Illustrated key to species of genus Dendroctonus (Coleoptera: Curculionidae) occurring in Mexico and Central America. J. Insect Sci. 17, 1–15. https://doi.org/10.1093/jisesa/iex009 (2016).

    Article  Google Scholar 

  • 85.

    Timothy, L. B. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208. https://doi.org/10.1093/nar/gkp335 (2009).

    CAS  Article  Google Scholar 

  • 86.

    Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants