in

Impact of local and landscape complexity on the stability of field-level pest control

  • 1.

    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    Article  Google Scholar 

  • 2.

    Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).

    Article  Google Scholar 

  • 3.

    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    CAS  Article  Google Scholar 

  • 4.

    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).

    Article  Google Scholar 

  • 5.

    Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).

    Article  Google Scholar 

  • 6.

    McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  Article  Google Scholar 

  • 7.

    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

    Article  Google Scholar 

  • 8.

    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Article  Google Scholar 

  • 9.

    Tilman, D. & Wedin, D. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS  Google Scholar 

  • 10.

    McNaughton, S. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Natur. 111, 515–525 (1977).

    Article  Google Scholar 

  • 11.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS  Article  Google Scholar 

  • 12.

    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).

    CAS  Article  Google Scholar 

  • 13.

    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    Article  Google Scholar 

  • 14.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 111, E7863–E7870 (2018).

    Article  CAS  Google Scholar 

  • 15.

    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    Article  Google Scholar 

  • 16.

    Larsen, A. E. & Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Sexton, S. E., Lei, Z. & Zilberman, D. The economics of pesticides and pest control. Int. Rev. Envir. Resour. Econ. 1, 271–326 (2007).

    Article  Google Scholar 

  • 18.

    Waterfield, G. & Zilberman, D. Pest management in food systems: an economic perspective. Annu. Rev. 37, 223–245 (2012).

  • 19.

    O’Rourke, M. E. & Jones, L. E. Analysis of landscape-scale insect pest dynamics and pesticide use: an empirical and modeling study. Ecol. Appl. 21, 3199–3210 (2011).

    Article  Google Scholar 

  • 20.

    Gross, K. & Rosenheim, J. A. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21, 2770–2780 (2011).

    Article  Google Scholar 

  • 21.

    Rosenheim, J. A. & Meisner, M. H. Ecoinformatics can reveal yield gaps associated with crop–pest interactions: a proof-of-concept. PLoS ONE 8, e80518 (2013).

    Article  CAS  Google Scholar 

  • 22.

    Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73, 232–239 (2016).

    Article  CAS  Google Scholar 

  • 23.

    Farrar, J. J., Baur, M. E. & Elliott, S. F. Adoption of IPM practices in grape, tree fruit, and nut production in the western United States. J. Integr. Pest Manag. 7, 8 (2016).

  • 24.

    Rosenheim, J. A., Cass, B. N., Kahl, H. & Steinmann, K. P. Variation in pesticide use across crops in California agriculture: economic and ecological drivers. Sci. Total Environ. 733, 138683 (2020).

    CAS  Article  Google Scholar 

  • 25.

    Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).

    Article  Google Scholar 

  • 26.

    Larsen, A. E., Patton, M. & Martin, E. A. High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 651, 828–837 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Dudley, N. et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv. 209, 449–453 (2017).

    Article  Google Scholar 

  • 28.

    Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: evidence from the Clean Air Act of 1970. Q. J. Econ. 118, 1121–1167 (2003).

    Article  Google Scholar 

  • 30.

    Larsen, A. E., Gaines, S. D. & Deschenes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

  • 31.

    California Agricultural Statistics Review 2017–2018 1–105 (California Department of Food & Agriculture, 2018).

  • 32.

    Summary of Pesticide Use Report Data 2017 (California Department of Pesticide Regulation, 2018).

  • 33.

    Bourque, K. et al. Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci. Total Environ. 670, 865–875 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Article  Google Scholar 

  • 35.

    Just, R. E. & Pope, R. D. Stochastic specification of production functions and economic implications. J. Econ. 7, 67–86 (1978).

    Article  Google Scholar 

  • 36.

    Murdoch, W. W. Diversity, complexity, stability and pest control. J. Appl. Ecol. 12, 795–807 (1975).

    Article  Google Scholar 

  • 37.

    Van Emden, H. F. & Williams, G. Insect stability and diversity in agro-ecosystems. Annu. Rev. Entomol. 19, 455–475 (1974).

    Article  Google Scholar 

  • 38.

    Edwards, C. B., Rosenheim, J. A. & Segoli, M. Aggregating fields of annual crops to form larger-scale monocultures can suppress dispersal-limited herbivores. Theor. Ecol. 11, 321–331.

  • 39.

    O’Rourke, M. E., Rienzo-Stack, K. & Power, A. G. A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791 (2011).

    Article  Google Scholar 

  • 40.

    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in Western Europe. Proc. R. Soc. B 285, 1872 (2018).

    Article  Google Scholar 

  • 41.

    Holzschuh, A., Dewenter, I. S. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 79, 491–500 (2010).

    Article  Google Scholar 

  • 42.

    Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).

    Article  Google Scholar 

  • 43.

    Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).

    Article  Google Scholar 

  • 44.

    Zhao, Z. & Reddy, G. V. P. Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biol. Control 128, 17–23 (2019).

    Article  Google Scholar 

  • 45.

    Costello, C., Quérou, N. & Tomini, A. Private eradication of mobile public bads. Eur. Econ. Rev. 94, 23–44 (2017).

    Article  Google Scholar 

  • 46.

    Noack, F. & Larsen, A. The contrasting effects of farm size on farm incomes and food production. Environ. Res. Lett. 14, 084024 (2019).

    Article  Google Scholar 

  • 47.

    Gong, Y., Baylis, K., Kozak, R. & Bull, G. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agric. Econ. 47, 411–421 (2016).

    Article  Google Scholar 

  • 48.

    Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).

    Article  CAS  Google Scholar 

  • 49.

    Larsen, A. E., Farrant, D. N. & MacDonald, A. J. Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric. Ecosyst. Environ. 289, 106741 (2020).

    CAS  Article  Google Scholar 

  • 50.

    Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5, 497–526 (2005).

    CAS  Article  Google Scholar 

  • 51.

    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).

    Article  Google Scholar 

  • 52.

    Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).

    CAS  Article  Google Scholar 

  • 53.

    Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Front. Public Health 4, 320–328 (2016).

    Article  Google Scholar 

  • 54.

    Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 14865–14867 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Estrada, J. Mean-semivariance optimization: a heuristic approach. J. Appl. Financ. 18, 1–16 (2008).

    Article  Google Scholar 

  • 56.

    Finger, R., Dalhaus, T., Allendorf, J. & Hirsch, S. Determinants of downside risk exposure of dairy farms. Eur. Rev. Agric. Econ. 45, 641–674 (2018).

    Article  Google Scholar 

  • 57.

    Miranda, M. J. & Glauber, J. W. Providing crop disaster assistance through a modified deficiency payment program. Am. J. Agric. Econ. 73, 1233–1243 (1991).

    Article  Google Scholar 

  • 58.

    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

  • 59.

    Cabas, J., Weersink, A. & Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 101, 599–616 (2009).

    Article  CAS  Google Scholar 

  • 60.

    Isik, M. & Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 38, 835–844 (2006).

    Article  Google Scholar 

  • 61.

    Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).

    Article  Google Scholar 

  • 62.

    Bellemare, M. F. & Wichman, C. J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 82, 50–61 (2019).

    Article  Google Scholar 

  • 63.

    Conley, T. G. & Molinari, F. Spatial correlation robust inference with errors in location or distance. J. Econ. 140, 76–96 (2007).

    Article  Google Scholar 

  • 64.

    Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).

    CAS  Article  Google Scholar 

  • 65.

    Fetzer, T. Can Workfare Programs Moderate Conflict? Evidence from India The Warwick Economics Research Paper Series (TWERPS) 1220 (University of Warwick, Department of Economics, 2019); https://ideas.repec.org/p/wrk/warwec/1220.html


  • Source: Ecology - nature.com

    Pushing the envelope with fusion magnets

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair