in

Impacts of the continuous maize cultivation on soil properties in Sainyabuli province, Laos

  • 1.

    Thongmanivong, S. & Fujita, Y. Recent land use and livelihood transitions in Northern Laos. Mt. Res. Dev. 26, 237–244 (2006).

    Article  Google Scholar 

  • 2.

    Vliet, N. et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Global Environ. Change 22, 418–429 (2012).

    Article  Google Scholar 

  • 3.

    Fujisao, K. et al. A study on the productivity under the continuous maize cultivation in Sainyabuli Province, Laos. I. Yield trend under continuous maize cultivation. Field Crops Res. 217, 167–171 (2018).

    Article  Google Scholar 

  • 4.

    Juo, A. S. R., Franzluebbers, K., Dabiri, A. & Ikhile, R. Changes in soil properties during long-term fallow and continuous cultivation after forest clearing in Nigeria. Agr. Ecosyst. Environ. 56, 9–18 (1995).

    Article  Google Scholar 

  • 5.

    Mallarino, A. P., Webb, J. R. & Blackmer, A. M. Corn and soybean yield during 11 years of phosphorus and potassium fertilization on a high-testing soil. J. Prod. Agric. Abstr. Res. 4, 12–317 (1991).

    Google Scholar 

  • 6.

    Cai, Z. C. & Qin, S. W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma 136, 708–715 (2006).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Moebius-Clune, B. N. et al. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agric. Ecosyst. Environ. 141, 86–99 (2011).

    CAS  Article  Google Scholar 

  • 8.

    Lestrelin, G. & Giordano, M. Upland development policy, livelihood change and land degradation: interactions from a Laotian village. Land Degrad. Dev. 18, 55–76 (2007).

    Article  Google Scholar 

  • 9.

    Raich, J. & Schlesinger, W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).

    ADS  Article  Google Scholar 

  • 10.

    Romkens, M. J. M., Helming, K. & Prasad, S. N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. CATENA 46, 103–123 (2001).

    Article  Google Scholar 

  • 11.

    Dalal, R. C. & Mayer, R. J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II Total organic carbon and its rate of loss from the soil profile. Austr. J. Soil Res. 24, 281–292 (1986).

    CAS  Article  Google Scholar 

  • 12.

    Pennock, D. J., Anderson, D. W. & de Jong, E. Landscape-scale changes in indicators of soil quality due to cultivation in Saskatchewan, Canada. Geoderma 64, 1–19 (1994).

    ADS  Article  Google Scholar 

  • 13.

    McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K. & Meyer, L. D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. Am. Soc. Agric. Eng. 30, 1387–1396 (1987).

    Article  Google Scholar 

  • 14.

    Liu, B. Y., Nearing, M. A. & Risse, L. M. Slope gradient effects on soil loss for steep slopes. Am. Soc. Agric. Eng. 37, 1835–1840 (1994).

    Article  Google Scholar 

  • 15.

    Turkelboom, F., Poesenc, J., Ohlera, I. & Ongprasertd, S. Reassessment of tillage erosion rates by manual tillage on steep slopes in northern Thailand. Soil Tillage Res. 51, 245–259 (1999).

    Article  Google Scholar 

  • 16.

    Dupin, B., de Rouw, P. & K.B.A. & Valentin, C, ,. Assessment of tillage erosion rates on steep slopes in northern Laos. Soil Tillage Res. 103, 119–126 (2009).

    Article  Google Scholar 

  • 17.

    Kiyono, Y. et al. Predicting chronosequential changes in carbon stocks of pachymorph bamboo communities in slash-and-burn agricultural fallow, northern Lao People’s Democratic Republic. J. For. Res. 12, 371–383 (2007).

    Article  Google Scholar 

  • 18.

    Nyberg, G., Bargués Tobella, A., Kinyangi, J. & Ilstedt, U. Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya. Hydrol. Earth Syst. Sci. 16, 2085–2094 (2012).

    ADS  Article  Google Scholar 

  • 19.

    Bray, R. H. & Kurtz, L. T. Determination of total organic and available forms of phosphate in soils. Soil Sci. 59, 39–45 (1945).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Quine, T. A. & Zhang, Y. An investigation of spatial variation in soil erosion, soil properties, and crop production within an agricultural field in Devon, United Kingdom. J. Soil Water Conserv. 57, 55–65 (2002).

    Google Scholar 

  • 21.

    Zhang, J. H., Liu, S. Z. & Zhong, X. H. Distribution of soil organic carbon and phosphorus on an eroded hillslope of the rangeland in the northern Tibet Plateau, China. Eur. J. Soil Sci. 57, 365–371 (2006).

    CAS  Article  Google Scholar 

  • 22.

    Homma, K. et al. Toposequential variation in soil fertility and rice productivity of rainfed lowland paddy fields in mini-watershed (Nong) in Northeast Thailand. Plant Prod. Sci. 6, 147–153 (2003).

    Article  Google Scholar 

  • 23.

    Asai, H. et al. Yield response of indica and tropical japonica genotypes to soil fertility conditions under rainfed uplands in northern Laos. Field Crops Res. 112, 141–148 (2009).

    Article  Google Scholar 

  • 24.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Tulaphitak, T., Pairintra, C. & Kyuma, K. Changes in soil fertility and tilth under shifting cultivation. II. Changes in soil nutrient status. Soil Sci. Plant Nutr. 31, 239–249 (1985).

    Article  Google Scholar 

  • 26.

    Roder, W., Phengchanh, S. & Maniphone, S. Dynamics of soil and vegetation during crop and fallow period in slash-and-burn fields of northern Laos. Geoderma 76, 131–144 (1997).

    ADS  Article  Google Scholar 

  • 27.

    Sa, J. C. M. et al. Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisoil. Soil Sci. Soc. Am. J. 65, 1486–1499 (2001).

    CAS  Article  Google Scholar 

  • 28.

    Shahriari, A., Khormali, F., Kehl, M., Ayoubi, Sh. & Welp, G. Effect of a long-term cultivation and crop rotations on organic carbon in loess derived soils of Golestan Province, Northern Iran. Int. J. Plant Prod. 5, 147–152 (2011).

    CAS  Google Scholar 

  • 29.

    Hajabbasi, M. A., Jalalin, A. & Karimzadeh, H. C. Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant Soil 90, 301–308 (1997).

    Article  Google Scholar 

  • 30.

    Haas, H.J., Evans, C.E. & Miles, E.F., Nitrogen and carbon changes in Great Plains soils as influenced by cropping and soil treatments. United States Department of Agriculture Technical Bulletin No. 1164 (1957).

  • 31.

    Alvarez, R. & Lavado, R. S. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 83, 127–141 (1998).

    ADS  Article  Google Scholar 

  • 32.

    Müller, T. & Höper, H. Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biol. Biochem. 36, 877–888 (2004).

    Article  Google Scholar 

  • 33.

    Parfitt, R. L., Theng, B. K. G., Whitton, J. S. & Shepherd, T. G. Effects of clay minerals and land use on organic matter pools. Geoderma 75, 1–12 (1997).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Lomander, A., Kätterer, T. & Andrén, O. Carbon dioxide evolution from top- and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol. Biochem. 30, 2017–2022 (1998).

    CAS  Article  Google Scholar 

  • 35.

    Burke, I. C. et al. Evaluating and testing models of terrestrial biogeochemistry: the role of temperature in controlling decomposition. Models Ecosyst. Sci. 2003, 225–253 (2003).

    Google Scholar 

  • 36.

    Food and Agriculture Organization of the United Nation, 2020, FAOSTAT. https://www.fao.org/faostat/en/#data [access in 2020/4/19].

  • 37.

    Valentin, C. et al. Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices. Agr. Ecosyst. Environ. 128, 225–238 (2008).

    Article  Google Scholar 

  • 38.

    Fox, J. & Volger, J. B. Land-use and land cover change in mountane mainland Southeast Asia. Environ. Manage. 36, 394–403 (2005).

    Article  Google Scholar 

  • 39.

    Lal, R. Soil management in the developing countries. Soil Sci. 165, 57–72 (2000).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Innovations in environmental training for the mining industry

    Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter