in

Implication of single year seasonal sampling to genetic diversity fluctuation that coordinates with oceanographic dynamics in torpedo scads near Taiwan

  • 1.

    Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12, 110–119 (2011).

    Article  Google Scholar 

  • 2.

    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).

    Article  Google Scholar 

  • 3.

    Wedding, L. M. et al. Geospatial approaches to support pelagic conservation planning and adaptive management. Endang. Species Res. 30, 1–9 (2016).

    Article  Google Scholar 

  • 4.

    André, C. et al. Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: early life stage dispersal and adult migration. BMC Res. Notes 9, 1 (2016).

    Article  Google Scholar 

  • 5.

    Canales-Aguirre, C. B., Ferrada-Fuentes, S., Galleguillos, R. & Hernández, C. E. Genetic structure in a small pelagic fish coincides with a marine protected area: seascape genetics in Patagonian Fjords. PLoS ONE 11, e0160670. https://doi.org/10.1371/journal.pone.0160670 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Eggers, F. et al. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLoS ONE 9, e111985 (2014).

    ADS  Article  Google Scholar 

  • 7.

    Saraux, C. et al. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 52–61 (2019).

    ADS  Article  Google Scholar 

  • 8.

    Silva, A. et al. Adult-mediated connectivity and spatial population structure of sardine in the Bay of Biscay and Iberian coast. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 62–74 (2019).

    ADS  Article  Google Scholar 

  • 9.

    Sreenivasan, P. Observations on the fishery and biology of Megalaspis cordyla (Linnaeus) at Vizhinjam. Indian J. Fish. 25, 122–140 (1978).

    Google Scholar 

  • 10.

    Nakabō, T. Fishes of Japan: With Pictorial Keys to the Species Vol. 1 (Tokai University Press, Tokyo, 2002).

    Google Scholar 

  • 11.

    Shao, K. T. Taiwan Fish Database. WWW Web electronic publication. https://fishdb.sinica.edu.tw. Accessed October 20, 2019.

  • 12.

    Sreenivasan, P. Observations on the food and feeding habits of the Ttorpedo trevally Megalaspis cordyla (Linnaeus) from Vizhinjam bay. Indian J. Fish. 21, 76–84 (1974).

    Google Scholar 

  • 13.

    Hu, J., Kawamura, H., Hong, H. & Qi, Y. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr. 56, 607–624 (2000).

    Article  Google Scholar 

  • 14.

    Gallagher, S. J. et al. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography https://doi.org/10.1029/2008PA001660 (2009).

    Article  Google Scholar 

  • 15.

    Gallagher, S. J. et al. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Prog. Earth Planet. Sci. 2, 17 (2015).

    ADS  Article  Google Scholar 

  • 16.

    Jan, S., Wang, J., Chern, C.-S. & Chao, S.-Y. Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Syst. 35, 249–268 (2002).

    Article  Google Scholar 

  • 17.

    Winans, G. A. Geographic variation in the milkfish Chanos chanos I. Biochemical evidence. Evolution 34, 558–574 (1980).

    CAS  PubMed  Google Scholar 

  • 18.

    Bell, L., Moyer, J. & Numachi, K. Morphological and genetic variation in Japanese populations of the anemonefish Amphiprion clarkii. Mar. Biol. 72, 99–108 (1982).

    Article  Google Scholar 

  • 19.

    Richardson, B. Distribution of protein variation in skipjack tuna (Katsumonuspelamis) from the central and south-west Pacific. Aust. J. Mar. Freshw. Res. 34, 231–251 (1983).

    CAS  Article  Google Scholar 

  • 20.

    Rosenblatt, R. H. & Waples, R. S. A genetic comparison of allopatric populations of shore fish species from the eastern and central Pacific Ocean: dispersal or vicariance?. Copeia 1986, 275–284 (1986).

    Article  Google Scholar 

  • 21.

    McMillan, W. O. & Palumbi, S. R. Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc. R. Soc. B 260, 229–236 (1995).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).

    Article  Google Scholar 

  • 23.

    Palumbi, S. R. & Wilson, A. C. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44, 403–415 (1990).

    Article  Google Scholar 

  • 24.

    Ayala, F. J., Hedgecock, D., Zumwalt, G. S. & Valentine, J. W. Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27, 177–191 (1973).

    PubMed  Google Scholar 

  • 25.

    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations from reefs in the Western Coral Sea. Coral Reefs 11, 135–141 (1992).

    ADS  Article  Google Scholar 

  • 26.

    Williams, S. T. & Benzie, J. A. H. Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific Oceans, revealed by allozyme electrophoresis. Mar. Biol. 126, 99–107 (1996).

    Article  Google Scholar 

  • 27.

    Arnaud, S., Bonhomme, F. & Borsa, P. Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterus macarellus, D. macrosoma, and D. russelli) in South-East Asia. Mar. Biol. 135, 699–707. https://doi.org/10.1007/s002270050671 (1999).

    CAS  Article  Google Scholar 

  • 28.

    Huang, C., Weng, C. & Lee, S. Distinguishing two types of gray mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities. J. Comp. Physiol. B 171, 387–394 (2001).

    CAS  Article  Google Scholar 

  • 29.

    McCafferty, S. et al. Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae). Mol. Ecol. 11, 1377–1392 (2002).

    CAS  Article  Google Scholar 

  • 30.

    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51, 768–783 (1997).

    PubMed  Google Scholar 

  • 31.

    Fauvelot, C. & Planes, S. Understanding origins of present-day genetic structure in marine fish: biologically or historically driven patterns? Mar. Biol. 141, 773–788 (2002).

    Article  Google Scholar 

  • 32.

    Rajanna, K., Benakappa, S., Anjanayappa, H. & Honnananda, B. Maturation and spawning of the horse mackerel, Megalaspis cordyla (Linnaeus) from Mangalore waters. Environ. Ecol. 30, 41–44 (2012).

    Google Scholar 

  • 33.

    Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).

    CAS  Article  Google Scholar 

  • 34.

    Niu, S.-F. et al. Demographic history and population genetic analysis of Decapterus maruadsi from the northern South China Sea based on mitochondrial control region sequence. PeerJ 7, e7953 (2019).

    Article  Google Scholar 

  • 35.

    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Lavery, S., Moritz, C. & Fielder, D. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5, 557–570 (1996).

    Article  Google Scholar 

  • 37.

    Planes, S. Geographic structure and gene flow in the manini (convict surgeonfish, Acanthurustriostegus) in the South Central Pacific. Genetics and Evolution of Aquatic Organisms, 113–122 (1994).

  • 38.

    Ocean Data Bank of the Ministry of Science and Technology, Republic of China. https://www.odb.ntu.edu.tw/.

  • 39.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  Article  Google Scholar 

  • 40.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 41.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. 4, vey016 (2018).

    Article  Google Scholar 

  • 42.

    Damerau, M., Freese, M. & Hanel, R. Multi-gene phylogeny of jacks and pompanos (Carangidae), including placement of monotypic vadigo Campogramma glaycos. J. Fish Biol. 92, 190–202 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

    CAS  Article  Google Scholar 

  • 44.

    Múrias dos Santos, A., Cabezas, M. P., Tavares, A. I., Xavier, R. & Branco, M. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32, 627–628. https://doi.org/10.1093/bioinformatics/btv636 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS  Article  Google Scholar 

  • 46.

    Global Administrative Areas (2012). GADM database of Global Administrative Areas. https://www.gadm.org.

  • 47.

    QGIS.org (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org.

  • 48.

    Adobe Inc. (2019). Adobe Illustrator. https://adobe.com/products/illustrator.


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization