in

Improving prediction of rare species’ distribution from community data

  • 1.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  • 3.

    Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).

    Google Scholar 

  • 4.

    Sofaer, H. R. et al. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 480–480 (2019).

    Google Scholar 

  • 5.

    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Google Scholar 

  • 6.

    Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. https://doi.org/10.1111/DDI.12892 (2019).

    Article  Google Scholar 

  • 7.

    Gogol-Prokurat, M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 21, 33–47 (2011).

    PubMed  Google Scholar 

  • 8.

    Lomba, A. et al. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biol. Conserv. 143, 2647–2657 (2010).

    Google Scholar 

  • 9.

    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).

    Google Scholar 

  • 10.

    Magurran, A. E. & Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature 422, 714–716 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Cao, Y., Larsen, D. P. & Thorne, R.S.-J.J. Rare species in multivariate analysis for bioassessment: Some considerations. J. N. Am. Benthol. Soc. 20, 144–153 (2001).

    Google Scholar 

  • 12.

    Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 10, e551 (2019).

    Google Scholar 

  • 13.

    Guisan, A. et al. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511 (2006).

    PubMed  Google Scholar 

  • 14.

    Ancillotto, L. et al. An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models. Ecol. Evol. https://doi.org/10.1002/ece3.6317 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Della Rocca, F., Bogliani, G., Breiner, F. T. & Milanesi, P. Identifying hotspots for rare species under climate change scenarios: Improving saproxylic beetle conservation in Italy. Biodivers. Conserv. 28, 433–449 (2019).

    Google Scholar 

  • 16.

    Cunningham, R. B. & Lindenmayer, D. B. Modeling count data of rare species: Some statistical issues. Ecology 86, 1135–1142 (2005).

    Google Scholar 

  • 17.

    Vaughan, I. P. & Ormerod, S. J. The continuing challenges of testing species distribution models. J. Appl. Ecol. 42, 720–730 (2005).

    Google Scholar 

  • 18.

    Franklin, J., Wejnert, K. E., Hathaway, S. A., Rochester, C. J. & Fisher, R. N. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Divers. Distrib. 15, 167–177 (2009).

    Google Scholar 

  • 19.

    Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41, 263–274 (2004).

    Google Scholar 

  • 20.

    Chefaoui, R. M. & Lobo, J. M. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Modell. 210, 478–486 (2008).

    Google Scholar 

  • 21.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Google Scholar 

  • 22.

    Meynard, C. N. & Quinn, J. F. Predicting species distributions: A critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34, 1455–1469 (2007).

    Google Scholar 

  • 23.

    Royle, J. A., Nichols, J. D. & Kéry, M. Modelling occurrence and abundance of species when detection is imperfect. Oikos 110, 353–359 (2005).

    Google Scholar 

  • 24.

    Welsh, A. H., Cunningham, R. B., Donnelly, C. F. & Lindenmayer, D. B. Modelling the abundance of rare species: Statistical models for counts with extra zeros. Ecol. Modell. 88, 297–308 (1996).

    Google Scholar 

  • 25.

    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).

    PubMed  Google Scholar 

  • 26.

    Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).

    Google Scholar 

  • 27.

    Rufener, M.-C., Kinas, P. G., Nóbrega, M. F. & Lins Oliveira, J. E. Bayesian spatial predictive models for data-poor fisheries. Ecol. Modell. 348, 125–134 (2017).

    Google Scholar 

  • 28.

    Blangiardo, M. & Cameletti, M. Spatial and spatial-temporal bayesian models with R-INLA. Spat Spat. Epidemiol. 4, 33–49 (2013).

    MATH  Google Scholar 

  • 29.

    Nieto-Lugilde, D., Maguire, K. C., Blois, J. L., Williams, J. W. & Fitzpatrick, M. C. Multiresponse algorithms for community-level modelling: Review of theory, applications, and comparison to species distribution models. Methods Ecol. Evol. 9, 834–848 (2018).

    Google Scholar 

  • 30.

    Warton, D. I. et al. So many variables: Joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    PubMed  Google Scholar 

  • 31.

    Thorson, J. T., Pinsky, M. L. & Ward, E. J. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12567 (2016).

    Article  Google Scholar 

  • 32.

    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed  Google Scholar 

  • 33.

    Hui, F. K. C. Boral-Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).

    Google Scholar 

  • 34.

    Warton, D. I., Foster, S. D., De’ath, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).

    Google Scholar 

  • 35.

    Ovaskainen, O. & Soininen, J. Making more out of sparse data: Hierarchical modeling of species communities. Ecology 92, 289–295 (2011).

    PubMed  Google Scholar 

  • 36.

    Hui, F. K. C., Warton, D. I., Foster, S. D. & Dunstan, P. K. To mix or not to mix: Comparing the predictive performance of mixture models vs separate species distribution models. Ecology 94, 1913–1919 (2013).

    PubMed  Google Scholar 

  • 37.

    Leach, K., Montgomery, W. I. & Reid, N. Modelling the influence of biotic factors on species distribution patterns. Ecol. Modell. 337, 96–106 (2016).

    Google Scholar 

  • 38.

    Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions?. J. Biogeogr. 44, 8–17 (2017).

    Google Scholar 

  • 39.

    D’Amen, M., Rahbek, C., Zimmermann, N. E. & Guisan, A. Spatial predictions at the community level: From current approaches to future frameworks. Biol. Rev. 92, 169–187 (2017).

    PubMed  Google Scholar 

  • 40.

    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).

    PubMed  Google Scholar 

  • 41.

    Thorson, J. T., Kell, L. T., De Oliveira, J. A. A., Sampson, D. B. & Punt, A. E. Introduction to data-poor stock assessment. Fish. Res. 171, 1–3 (2015).

    Google Scholar 

  • 42.

    Schliep, E. M. et al. Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Glob. Ecol. Biogeogr. 27, 142–155 (2018).

    MathSciNet  Google Scholar 

  • 43.

    Maguire, K. C. et al. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R. Soc. B Biol. Sci. 283, 20152817 (2016).

    Google Scholar 

  • 44.

    Zhang, C., Chen, Y., Xu, B., Xue, Y. & Ren, Y. Comparing the prediction of joint species distribution models with respect to characteristics of sampling data. Ecography (Cop.) 41, 1876–1887 (2018).

    Google Scholar 

  • 45.

    Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. A comparison of joint species distribution models for presence–absence data. Methods Ecol. Evol. 10, 198–211 (2019).

    Google Scholar 

  • 46.

    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Google Scholar 

  • 48.

    Rizvanovic, M., Kennedy, J. D., Nogués-Bravo, D. & Marske, K. A. Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Divers. Distrib. 25, 142–153 (2019).

    Google Scholar 

  • 49.

    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Google Scholar 

  • 50.

    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).

    Google Scholar 

  • 51.

    Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C. & Guisan, A. Measuring the relative effect of factors affecting species distribution model predictions. Methods Ecol. Evol. 5, 947–955 (2014).

    Google Scholar 

  • 52.

    Rabinowitz, D., Cairns, S. & Dillon, T. Seven forms of rarity and their frequency in the flora of the British Isles. In Conservation Biology: The Science of Scarcity and Diversity 182–204 (Sinauer, 1986).

  • 53.

    Gaston, K. J. What is Rarity? In The Biology of Rarity: Causes and Consequences of Rare-Common Differences 30–47 (Chapman and Hall, New York, 1997).

    Google Scholar 

  • 54.

    Boulesteix, A.-L., Janitza, S., Kruppa, J. & König, I. R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 493–507 (2012).

    Google Scholar 

  • 55.

    Özesmi, S. L., Tan, C. O. & Özesmi, U. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol. Modell. 195, 83–93 (2006).

    Google Scholar 

  • 56.

    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).

    Google Scholar 

  • 57.

    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).

    Google Scholar 

  • 58.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Google Scholar 

  • 59.

    Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J. & Zhang, S. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecol. Monogr. 87, 34–56 (2017).

    Google Scholar 

  • 60.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Google Scholar 

  • 61.

    Suryanarayana, I. et al. Neural networks in fisheries research. Fish. Res. 92, 115–139 (2008).

    Google Scholar 

  • 62.

    Brun, P., Kiørboe, T., Licandro, P. & Payne, M. R. The predictive skill of species distribution models for plankton in a changing climate. Glob. Chang. Biol. 22, 3170–3181 (2016).

    ADS  PubMed  Google Scholar 

  • 63.

    Smoliński, S. & Radtke, K. Spatial prediction of demersal fish diversity in the Baltic Sea: Comparison of machine learning and regression-based techniques. ICES J. Mar. Sci. J. Cons. 74, 102–111 (2017).

    Google Scholar 

  • 64.

    Segal, M. & Xiao, Y. Multivariate random forests. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 80–87 (2011).

    Google Scholar 

  • 65.

    Rahman, R., Otridge, J. & Pal, R. IntegratedMRF: Random forest-based framework for integrating prediction from different data types. Bioinformatics 33, 1407–1410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Olden, J. D. A species-specific approach to modeling biological communities and its potential for conservation. Conserv. Biol. 17, 854–863 (2003).

    Google Scholar 

  • 67.

    Ovaskainen, O., Roy, D. B., Fox, R. & Anderson, B. J. Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol. Evol. 7, 428–436 (2016).

    Google Scholar 

  • 68.

    Clark, J. S. Why species tell more about traits than traits about species: Predictive analysis. Ecology 97, 1979–1993 (2016).

    PubMed  Google Scholar 

  • 69.

    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Google Scholar 

  • 70.

    Peres-Neto, P. R., Jackson, D. A. & Somers, K. M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49, 974–997 (2005).

    MathSciNet  MATH  Google Scholar 

  • 71.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    Google Scholar 

  • 72.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 73.

    Basheer, I. & Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 43, 3–31 (2000).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Impacts of hydrothermal plume processes on oceanic metal cycles and transport

    Covid-19 shutdown led to increased solar power output