in

Increased likelihood of heat-induced large wildfires in the Mediterranean Basin

  • 1.

    Moritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. M. & Doyle, J. Wildfires, complexity, and highly optimized tolerance. Proc. Natl. Acad. Sci. USA. 102, 17912–17917 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Littell, J. S. et al. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).

    PubMed  Google Scholar 

  • 3.

    Barbero, R. et al. Multi-scalar influence of weather and climate on very large-fires in the Eastern United States. Int. J. Climatol. 35, 2180–2186 (2015).

    Google Scholar 

  • 4.

    Turco, M. et al. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 7, 81 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Ruffault, J., Moron, V., Trigo, R. M. & Curt, T. Daily synoptic conditions associated with large fire occurrence in Mediterranean France: Evidence for a wind-driven fire regime. Int. J. Climatol. 37, 524–533 (2017).

    Google Scholar 

  • 6.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS One 11, 20 (2016).

    Google Scholar 

  • 8.

    Ruffault, J., Curt, T., Martin-StPaul, N. K., Moron, V. & Trigo, R. M. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat. Hazards Earth Syst. Sci. 18, 847–856 (2018).

    ADS  Google Scholar 

  • 9.

    Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Lagouvardos, K., Kotroni, V., Giannaros, ΤΜ & Dafis, S. Meteorological conditions conducive to the rapid spread of the deadly wildfire in eastern Attica, Greece. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/bams-d-18-0231.1 (2019).

    Article  Google Scholar 

  • 11.

    Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 1–9 (2018).

    Google Scholar 

  • 12.

    Dupuy, J.-L. et al. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 77, 1–49 (2020).

    Google Scholar 

  • 13.

    Boer, M. M. et al. Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Future 5, 1196–1202 (2017).

    ADS  Google Scholar 

  • 14.

    Fernandes, P. M., Barros, A. M. G., Pinto, A. & Santos, J. A. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J. Geophys. Res. G Biogeosci. 121, 2141–2157 (2016).

    ADS  Google Scholar 

  • 15.

    Hernandez, C., Drobinski, P. & Turquety, S. How much does weather control fire size and intensity in the Mediterranean region?. Ann. Geophys. 20, 20 (2015).

    Google Scholar 

  • 16.

    Jin, Y. et al. Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change. Environ. Res. Lett. 10, 94005 (2015).

    Google Scholar 

  • 17.

    Ruffault, J., Moron, V., Trigo, R. M. & Curt, T. Objective identification of multiple large fire climatologies: An application to a Mediterranean ecosystem. Environ. Res. Lett. 11, 075006 (2016).

    ADS  Google Scholar 

  • 18.

    Duane, A., Piqué, M., Castellnou, M. & Brotons, L. Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. Int. J. Wildl. Fire 24, 407–418 (2015).

    Google Scholar 

  • 19.

    Rodrigues, M., Trigo, R. M., Vega-García, C. & Cardil, A. Identifying large fire weather typologies in the Iberian Peninsula. Agric. For. Meteorol. 280, 107789 (2020).

    ADS  Google Scholar 

  • 20.

    Van Wagner, C. E. Structure of the Canadian forest fire weather index. Can. For. Serv. For. Tech. Rep. 35, 37 (1987).

    Google Scholar 

  • 21.

    Ruffault, J., Martin-StPaul, N., Pimont, F. & Dupuy, J.-L.L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 262, 391–401 (2018).

    ADS  Google Scholar 

  • 22.

    Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    ADS  Google Scholar 

  • 23.

    Abatzoglou, J. T. & Kolden, C. A. Relative importance of weather and climate on wildfire growth in interior Alaska. Int. J. Wildl. Fire 20, 479–486 (2011).

    Google Scholar 

  • 24.

    Gudmundsson, L., Rego, F. C., Rocha, M. & Seneviratne, S. I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 9, 84008 (2014).

    Google Scholar 

  • 25.

    Urbieta, I. R. et al. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environ. Res. Lett. 10, 114013 (2015).

    ADS  Google Scholar 

  • 26.

    Paschalidou, A. K. & Kassomenos, P. A. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology. Sci. Total Environ. 539, 536–545 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Kotlarski, S. et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7, 1297–1333 (2014).

    ADS  Google Scholar 

  • 28.

    Pereira, M. G., Trigo, R. M., Da Camara, C. C., Pereira, J. M. C. & Leite, S. M. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 129, 11–25 (2005).

    ADS  Google Scholar 

  • 29.

    Cardil, A., Merenciano, D. & Molina-Terrén, D. Wildland fire typologies and extreme temperatures in NE Spain. iForest. Biogeosci. For. 009, e1–e6 (2016).

    Google Scholar 

  • 30.

    Belhadj-Khedher, C., El-Melki, T., Mouillot, F. Saharan hot and dry Sirocco winds drive extreme fire events in Mediterranean Tunisia (North Africa). Atmosphere 11(6), 590 (2020).

    ADS  Google Scholar 

  • 31.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    ADS  Google Scholar 

  • 32.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).

    Google Scholar 

  • 33.

    Adams, A. & Patrick, L. Temperature response surfaces for mortality risk of tree species with future drought Item Type Article Citation Temperature response surfaces for mortality risk of tree species with future drought. Environ. Res. Lett. 12, 115014 (2017).

    ADS  Google Scholar 

  • 34.

    Cochard, H. A new mechanism for tree mortality due to drought and heatwaves. bioRxiv https://doi.org/10.1101/531632 (2019).

    Article  Google Scholar 

  • 35.

    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Pfleiderer, P., Schleussner, C.-F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).

    ADS  Google Scholar 

  • 37.

    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).

    ADS  Google Scholar 

  • 38.

    Alexander, M. E. & Cruz, M. G. Assessing the effect of foliar moisture on the spread rate of crown fires. Int. J. Wildl. Fire 22, 415–427 (2013).

    Google Scholar 

  • 39.

    Brotons, L., Aquilué, N., de Cáceres, M., Fortin, M. J. & Fall, A. How fire history, fire suppression practices and climate change affect wildfire regimes in mediterranean landscapes. PLoS One 8, e62392 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Batllori, E., Parisien, M. A., Krawchuk, M. A. & Moritz, M. A. Climate change-induced shifts in fire for Mediterranean ecosystems. Glob. Ecol. Biogeogr. 22, 1118–1129 (2013).

    Google Scholar 

  • 41.

    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 114, 2946–2951 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Parisien, M. A. et al. Fire deficit increases wildfire risk for many communities in the Canadian boreal forest. Nat. Commun. 11, 20 (2020).

    Google Scholar 

  • 43.

    Moreira, F. et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 15, 20 (2020).

    Google Scholar 

  • 44.

    Moreira, F. et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 92, 2389–2402 (2011).

    Google Scholar 

  • 45.

    Ruffault, J. & Mouillot, F. How a new fire-suppression policy can abruptly reshape the fire–weather relationship. Ecosphere 6, 1–19 (2015).

    Google Scholar 

  • 46.

    Pimont, F., Ruffault, J., Martin-Stpaul, N. K. & Dupuy, J. L. Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands?. Int. J. Wildl. Fire https://doi.org/10.1071/WF18091 (2019).

    Article  Google Scholar 

  • 47.

    Koutsias, N. et al. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int. J. Wildl. Fire 22, 493–507 (2013).

    Google Scholar 

  • 48.

    Pereira, M. G., Malamud, B. D., Trigo, R. M. & Alves, P. I. The history and characteristics of the 1980–2005 Portuguese rural fire database. Nat. Hazards Earth Syst. Sci. 11, 3343–3358 (2011).

    ADS  Google Scholar 

  • 49.

    Belhadj-Khedher, C. et al. A revised historical fire regime analysis in Tunisia (1985–2010) from a critical analysis of the national fire database and remote sensing. Forests 9, 20 (2018).

    Google Scholar 

  • 50.

    Herrera, S., Bedia, J., Gutiérrez, J. M., Fernández, J. & Moreno, J. M. On the projection of future fire danger conditions with various instantaneous/mean-daily data sources. Clim. Change 118, 827–840 (2013).

    ADS  Google Scholar 

  • 51.

    Jacob, D. et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

    Google Scholar 

  • 52.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Cannon, A. J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 50, 31–49 (2018).

    Google Scholar 

  • 54.

    Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?. J. Clim. 28, 6938–6959 (2015).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Pit lakes from Southern Sweden: natural radioactivity and elementary characterization

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens