in

Increasing our ability to predict contemporary evolution

  • 1.

    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s Finches. Science 296, 707–711 (2002).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Lässig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 77 (2017).

  • 3.

    Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

  • 4.

    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Exposito-Alonso, M. et al. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Stern, D. L. Evolution, Development, & the Predictable Genome (Roberts & Co. Publishers, USA, 2011).

  • 7.

    Reznick, D. N. & Travis, J. Is evolution predictable? Science 359, 738–739 (2018).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Gould, S. J. The Structure of Evolutionary Theory (Harvard University Press, USA, 2002).

  • 9.

    Reimchen, T. E. Predator-induced cyclical changes in lateral plate frequencies of Gasterosteus. Behaviour 132, 1079–1094 (1995).

    Article  Google Scholar 

  • 10.

    Marques, D. A. et al. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Rego-Costa, A., Débarre, F. & Chevin, L.-M. Chaos and the (un)predictability of evolution in a changing environment. Evolution (N. Y) 72, 375–385 (2018).

    Google Scholar 

  • 12.

    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

  • 13.

    Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).

    Article  Google Scholar 

  • 14.

    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    ADS  CAS  Article  Google Scholar 

  • 17.

    de Vladar, H. P. & Barton, N. H. The contribution of statistical physics to evolutionary biology. Trends Ecol. Evol. 26, 424–432 (2011).

    Article  Google Scholar 

  • 18.

    Milocco, L. & Salazar-Ciudad, I. Is evolution predictable? Quantitative genetics under complex genotype-phenotype maps. Evolution 74, 230–244 (2020).

    Article  Google Scholar 

  • 19.

    Hendry, A. P. Eco-evolutionary Dynamics (Princeton University Press, USA, 2017).

  • 20.

    Blount, Z.D., Borland, C.Z., & Lenski, R.E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli Proc. Natl Acad. Sci. 105, 7899–7906 (2008).

  • 21.

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 2053–2075 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  • 22.

    Rabe-Hesketh, S., Skrondal, A. & Pickles, A. Generalized multilevel structural equation modeling. Psychometrika 69, 167–190 (2004).

    MathSciNet  Article  Google Scholar 

  • 23.

    Haller, B. C. & Messer, P. W. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol. Biol. Evol 36, 632–637 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Epperson, B. K. Geographical Genetics (MPB-38) (Princeton University Press, USA, 2003).

  • 25.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, USA, 2020).

  • 26.

    Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett 12, 1261–1276 (2009).

    Article  Google Scholar 

  • 27.

    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Olendorf, R. et al. Frequency-dependent survival in natural guppy populations. Nature 441, 633–636 (2006).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Hori, M. Frequency-dependent natural selection in the handedness of scale-eating Cichlid fish. Science 260, 216–219 (1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 32.

    Nosil, P. et al. Ecology shapes epistasis in a genotype-phenotype-fitness map for stick insect colour. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01305-y (2020).


  • Source: Ecology - nature.com

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019