in

Individual back-calculated size-at-age based on otoliths from Pacific coral reef fish species

  • 1.

    Dulvy, N. K., Metcalfe, J. D., Glanville, J., Pawson, M. G. & Reynolds, J. D. Fishery stability, local extinctions, and shifts in community structure in skates. Conserv. Biol. 14, 283–293, https://doi.org/10.1046/j.1523-1739.2000.98540.x (2000).

    Article  Google Scholar 

  • 2.

    Hoegh-Guldberg, O. & Bruno, J. F. The Impact of Climate Change on the World’s Marine Ecosystems. Science 328, 1523–1528, https://doi.org/10.1126/science.1189930 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Jackson, J. B. C. et al. Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Science 293, 629–637, https://doi.org/10.1126/science.1059199 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    William, W. L. C., Reg, W., Telmo, M., Tony, J. P. & Daniel, P. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).

    Article  Google Scholar 

  • 5.

    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348, https://doi.org/10.1111/j.1461-0248.2011.01592.x (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish. Fish. 4, 25–64 (2003).

    Article  Google Scholar 

  • 7.

    Cheung, W. W., Pitcher, T. J. & Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserv. 124, 97–111 (2005).

    Article  Google Scholar 

  • 8.

    Frost, P. C. et al. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol. Lett. 9, 774–779 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78, 1816–1831 (1997).

    Article  Google Scholar 

  • 10.

    Schreck, C. B. & Moyle, P. B. Methods for fish biology. Schreck, Carl B. & Moyle, Peter B. edn, (American fisheries society, 1990).

  • 11.

    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Depczynski, M., Fulton, C. J., Marnane, M. J. & Bellwood, D. R. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153, 111–120 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 13.

    Morais, R. A. & Bellwood, D. R. Pelagic Subsidies Underpin Fish Productivity on a Degraded Coral Reef. Curr. Biol. 29, 1521–1527. e1526 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Barneche, D. R. & Allen, A. P. Embracing general theory and taxon-level idiosyncrasies to explain nutrient recycling. Proc. Natl. Acad. Sci. U. S. A. 112, 6248–6249 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food‐web trophic structure. Ecol. Lett. 21, 836–844 (2018).

    PubMed  Article  Google Scholar 

  • 16.

    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article  Google Scholar 

  • 17.

    Taylor, B., Rhodes, K., Marshell, A. & McIlwain, J. Age‐based demographic and reproductive assessment of orangespine Naso lituratus and bluespine Naso unicornis unicornfishes. J. Fish. Biol. 85, 901–916, https://doi.org/10.1111/jfb.12479 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Campana, S. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).

    Article  Google Scholar 

  • 19.

    Jolivet, A., Bardeau, J., Fablet, R., Paulet, Y. & de Pontual, H. Understanding otolith biomineralization processes: new insights into mircoscale spatial distribution of organic and mineral fractions from Raman microspectrometry. Anal. Bioanal. Chem. 392, 551–560 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Jolivet, A., Bardeau, J.-F., Fablet, R., Paulet, Y.-M. & de Pontual, H. How do the organic and mineral fractions drive the opacity of fish otoliths? Insights using Raman microspectrometry. Can. J. Fish. Aq. Sci. 70, 711–719, https://doi.org/10.1139/cjfas-2012-0298 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Panfili, J., de Pontual, H., Troadec, H. & Wright, P. J. Manuel de sclérochronologie des poissons. Coédition Ifremer-IRD, Panfili, J., de Pontual, H., Troadec, H. & Wright, P. J. (eds), France, 464 pp edn (2002).

  • 22.

    Pannella, G. Fish otolith: daily growth layers and periodical patterns. Science 173, 1124–1126, https://doi.org/10.1126/science.173.4002.1124 (1971).

    ADS  Article  Google Scholar 

  • 23.

    Katsanevakis, S. Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fish. Res. 81, 229–235 (2006).

    Article  Google Scholar 

  • 24.

    Vigliola, L. & Meekan, M. G. In Tropical fish otoliths: information for assessment, management and ecology Methods and technologies in fish biology and fisheries Ch. The back-calculation of fish growth from otoliths., 174-211 (Spinger, 2009).

  • 25.

    Bacchet, P., Zysman, T. & Lefèvre, Y. Guide des poissons de Tahiti et ses îles. (Au vent des îles, 2006).

  • 26.

    Moore, B. & Colas, B. Identification guide to the common coastal food fishes of the Pacific Islands region. (2016).

  • 27.

    RStan: the R interface to Stan. R package version 2.19.2. http://mc-stan.org/ (2018).

  • 28.

    Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0, http://mc-stan.org (2018).

  • 29.

    Vigliola, L., Harmelin-Vivien, M. & Meekan, M. G. Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can. J. Fish. Aq. Sci. 57, 1291–1299 (2000).

    Article  Google Scholar 

  • 30.

    Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 80, 28, https://doi.org/10.18637/jss.v080.i01 (2017).

    Article  Google Scholar 

  • 31.

    R: a Language and environment for statistical computing. R Foundation for Statistical Computing (Austria, Vienna, 2019).

  • 32.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686, https://doi.org/10.21105/joss.01686 (2019).

    ADS  Article  Google Scholar 

  • 33.

    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).

    Google Scholar 

  • 34.

    Boettiger, C., Lang, D. T. & Wainwright, P. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039, https://doi.org/10.1111/j.1095-8649.2012.03464.x (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Morat, F. et al. Individual back-calculated size-at-age based on otoliths from Pacific coral reef fish species. figshare https://doi.org/10.6084/m9.figshare.12156159.v5 (2020).

  • 36.

    Tyberghein, L. et al. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article  Google Scholar 

  • 37.

    Shadrin, A. & Emel’yanova, N. Embryonic-larval development and some data on the reproductive biology of Abudefduf sexfasciatus (Pomacentridae: Perciformes). J. Ichthyol. 47, 67–80 (2007).

    Article  Google Scholar 

  • 38.

    McCormick, M. I. Delayed metamorphosis of a tropical reef fish (Acanthurus triostegus): a field experiment. Mar. Ecol. Prog. Ser. 176, 25–38 (1999).

    ADS  Article  Google Scholar 

  • 39.

    Leis, J. M. & Carson-Ewart, B. M. The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae. Vol. 2 (Brill, 2000).

  • 40.

    Hutapea, J. H. & Slamet, B. Morphological development of Napoleon wrasse, Cheilinus undulatus larvae. Indonesian Aquaculture J. 1, 145–151 (2006).

    Google Scholar 

  • 41.

    Westneat, M. W. & Alfaro, M. E. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol. Phylogenet. Evol. 36, 370–390, https://doi.org/10.1016/j.ympev.2005.02.001 (2005).

    Article  PubMed  Google Scholar 

  • 42.

    Choat, J. H., Klanten, O. S., Van Herwerden, L., Robertson, D. R. & Clements, K. D. Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biol. J. Linnean Soc. 107, 529–557, https://doi.org/10.1111/j.1095-8312.2012.01959.x (2012).

    Article  Google Scholar 

  • 43.

    Emel’yanova, N., Pavlov, D. & Thuan, L. Hormonal stimulation of maturation and ovulation, gamete morphology, and raising of larvae in Dascyllus trimaculatus (Pomacentridae). J. Ichthyol. 49, 249–263 (2009).

    Article  Google Scholar 

  • 44.

    Kawabe, K. & Kohno, H. Morphological development of larval and juvenile blacktip grouper, Epinephelus fasciatus. Fish. Sci. 75, 1239–1251 (2009).

    CAS  Article  Google Scholar 

  • 45.

    Hussain, N. A. & Higuchi, M. Larval rearing and development of the brown spotted grouper, Epinephelus tauvina (Forskål). Aquaculture 19, 339–350 (1980).

    Article  Google Scholar 

  • 46.

    Ukawa, M., Higuchi, M. & Mito, S. Spawning habits and early life history of a serranid fish, Epinephelus akaara (Temminck et Schlegel). Jpn. J. Ichthyol. 13, 156–161 (1966).

    Google Scholar 

  • 47.

    Lim, L. Larviculture of the greasy grouper Epinephelus tauvina F. and the brown‐marbled grouper E. fuscoguttatus F. in Singapore. J. World Aquacult. Soc. 24, 262–274 (1993).

    ADS  Article  Google Scholar 

  • 48.

    Colin, P., Koenig, C. & Laroche, W. In Biology, fisheries and culture of tropical groupers and snappers. ICLARM Conf. Proc. Vol. 48 (eds F. Arreguin-Sãnchez, J.L. Munro, M.C. Baigos, & D. Pauly) 399-414 (1996).

  • 49.

    Duray, M. N., Estudillo, C. B. & Alpasan, L. G. The effect of background color and rotifer density on rotifer intake, growth and survival of the grouper (Epinephelus suillus) larvae. Aquaculture 146, 217–224 (1996).

    Article  Google Scholar 

  • 50.

    Duray, M. N., Estudillo, C. B. & Alpasan, L. G. Larval rearing of the grouper Epinephelus suillus under laboratory conditions. Aquaculture 150, 63–76 (1997).

    Article  Google Scholar 

  • 51.

    James, C., Al‐Thobaiti, S., Rasem, B. & Carlos, M. Breeding and larval rearing of the camouflage grouper Epinephelus polyphekadion (Bleeker) in the hypersaline waters of the Red Sea coast of Saudi Arabia. Aquac. Res. 28, 671–681 (1997).

    Article  Google Scholar 

  • 52.

    Glamuzina, B., Glavic, N., Tutman, P., Kozul, V. & Skaramuca, B. Egg and early larval development of laboratory reared goldblotch grouper, Epinephelus costae (Steindachner, 1878)(Pisces, Serranidae). Sci. Mar. 64, 341–345 (2000).

    Article  Google Scholar 

  • 53.

    Glamuzina, B. et al. Egg and early larval development of laboratory reared dusky grouper, Epinephelus marginatus (Lowe, 1834)(Picies, Serranidae). Sci. Mar. 62, 373–378 (1998).

    Article  Google Scholar 

  • 54.

    Leu, M.-Y., Liou, C.-H. & Fang, L.-S. Embryonic and larval development of the malabar grouper, Epinephelus malabaricus (Pisces: Serranidae). J. Mar. Biol. Assoc. U.K. 85, 1249 (2005).

    Article  Google Scholar 

  • 55.

    Jagadis, I., Ignatius, B., Kandasami, D. & Khan, M. A. Embryonic and larval development of honeycomb grouper Epinephelus merra Bloch. Aquac. Res. 37, 1140–1145 (2006).

    Article  Google Scholar 

  • 56.

    Yoseda, K. et al. Effects of temperature and delayed initial feeding on the growth of Malabar grouper (Epinephelus malabaricus) larvae. Aquaculture 256, 192–200 (2006).

    Article  Google Scholar 

  • 57.

    Ma, Z., Guo, H., Zhang, N. & Bai, Z. State of art for larval rearing of grouper. Intern. J. Aquac. 3, 63–72, https://doi.org/10.5376/ija.2013.03.0013 (2013).

    Article  Google Scholar 

  • 58.

    Kimura, S. & Kiriyama, T. Development of eggs, larvae and juveniles of the labrid fish, Halichoeres poecilopterus, reared in the laboratory. Jpn. J. Ichthyol. 39, 371–377 (1993).

    Article  Google Scholar 

  • 59.

    Suzuki, K. & Hioki, S. Spawning behavior, eggs, and larvae of the lutjanid fish, Lutjanus kasmira, in an aquarium. Jpn. J. Ichthyol. 26, 161–166 (1979).

    Google Scholar 

  • 60.

    Pavlov, D., Emel’yanova, N., Thuan, L. T. B. & Ha, V. T. Reproduction and initial development of manybar goatfish Parupeneus multifasciatus (Mullidae). J. Ichthyol. 51, 604 (2011).

    Article  Google Scholar 

  • 61.

    Masuma, S., Tezuka, N. & Teruya, K. Embryonic and morphological development of larval and juvenile coral trout, Plectropomus leopardus. Jpn. J. Ichthyol. 40, 333–342 (1993).

    Google Scholar 

  • 62.

    May, R. C., Popper, D. & McVEY, J. P. Rearing and larval development of Siganus canaliculatus (Park)(Pisces: Siganidae). Micronesica 10, 285–298 (1974).

    Google Scholar 

  • 63.

    Popper, D., May, R. & Lichatowich, T. An experiment in rearing larval Siganus vermiculatus (Valenciennes) and some observations on its spawning cycle. Aquaculture 7, 281–290 (1976).

    Article  Google Scholar 

  • 64.

    Bryan, P. G. & Madraisau, B. B. Larval rearing and development of Siganus lineatus (Pisces: Siganidae) from hatching through metamorphosis. Aquaculture 10, 243–252 (1977).

    Article  Google Scholar 

  • 65.

    Hara, S., Duray, M. N., Parazo, M. & Taki, Y. Year-round spawning and seed production of the rabbitfish, Siganus guttatus. Aquaculture 59, 259–272 (1986).

    Article  Google Scholar 

  • 66.

    Choat, J. H. & Robertson, D. R. In Coral reef fishes: dynamics and diversity in a complex ecosystem. (ed Academic Press. San Diego. California. USA) Ch. 3: Age-based studies, 57–80 (2002).

  • 67.

    Craig, P. C., Choat, J. H., Axe, L. M. & Saucerman, S. Population biology and harvest of the coral reef surgeonfish Acanthurus lineatus in American Samoa. Fish. Bull. 95, 680–693 (1997).

    Google Scholar 

  • 68.

    Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051, https://doi.org/10.1007/s00227-001-0773-6 (2002).

    Article  Google Scholar 

  • 69.

    Ralston, S. & Williams, H. A. Age and growth of Lutjanus kasmira, Lethrinus rubrioperculatus, Acanthurus lineatus, and Ctenochaetus striatus from American Samoa. (Southwest Fisheries Center, Honolulu Laboratory, National Marine Fisheries, 1988).

  • 70.

    Sudekum, A. E., Parrish, J. D., Radtke, R. L. & Ralston, S. Life history and ecology of large jacks in undisturbed, shallow, oceanic communities*. Fish. Bull. 89, 493–513 (1991).

    Google Scholar 

  • 71.

    Donovan, M. K., Friedlander, A. M., DeMartini, E. E., Donahue, M. J. & Williams, I. D. Demographic patterns in the peacock grouper (Cephalopholis argus), an introduced Hawaiian reef fish. Environ. Biol. Fishes 96, 981–994, https://doi.org/10.1007/s10641-012-0095-1 (2013).

    Article  Google Scholar 

  • 72.

    Mapleston, A. et al. Comparative biology of key inter-reefal serranid species on the Great Barrier Reef. Project Milestone Report to the Marine and Tropical Sciences Research Facility. 55 pp (Reef and Rainforest Research Centre Limited, Cairns 2009).

  • 73.

    Mehanna, S. F., Osman, Y. A. A., Khalil, M. T. & Hassan, A. Age and growth, mortality and exploitation ratio of Epinephelus summana (Forsskål, 1775) and Cephalopholis argus (Schneider, 1801) from the Egyptian Red Sea coast, Hurghada fishing area. Egypt. J. Aquat. Biol. Fish. 23, 65–75, https://doi.org/10.21608/ejabf.2019.52050 (2019).

    Article  Google Scholar 

  • 74.

    Pears, R. J. Comparative demography and assemblage structure of serranid fishes: implications for conservation and fisheries management Ph.D thesis, James Cook University, (2005).

  • 75.

    Moore, B. et al. Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change: Pohnpei, Federated States of Micronesia. Report No. Assement Report N°2, February-March 2014, 116 (2015).

    Google Scholar 

  • 76.

    Payet, S. D. et al. Hybridisation among groupers (genus Cephalopholis) at the eastern Indian Ocean suture zone: taxonomic and evolutionary implications. Coral Reefs 35, 1157–1169, https://doi.org/10.1007/s00338-016-1482-4 (2016).

    ADS  Article  Google Scholar 

  • 77.

    Fry, G., Brewer, D. & Venables, W. Vulnerability of deepwater demersal fishes to commercial fishing: Evidence from a study around a tropical volcanic seamount in Papua New Guinea. Fish. Res. 81, 126–141, https://doi.org/10.1016/j.fishres.2006.08.002 (2006).

    Article  Google Scholar 

  • 78.

    DeMartini, E. E. et al. Comparative growth, age at maturity and sex change, and longevity of Hawaiian parrotfishes, with bomb radiocarbon validation. Can. J. Fish. Aq. Sci. 75, 580–589, https://doi.org/10.1139/cjfas-2016-0523 (2018).

    CAS  Article  Google Scholar 

  • 79.

    Taylor, B. M. & Choat, J. H. Comparative demography of commercially important parrotfish species from Micronesia. J. Fish. Biol. 84, 383–402, https://doi.org/10.1111/jfb.12294 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Trip, E. L., Choat, J. H., Wilson, D. T. & Robertson, D. R. Inter-oceanic analysis of demographic variation in a widely distributed Indo-Pacific coral reef fish. Mar. Ecol. Prog. Ser. 373, 97–109, https://doi.org/10.3354/meps07755 (2008).

    ADS  Article  Google Scholar 

  • 81.

    Fidler, R. Y., Carroll, J., Rynerson, K. W., Matthews, D. F. & Turingan, R. G. Coral reef fishes exhibit beneficial phenotypes inside marine protected areas. PLoS ONE 13, e0193426, https://doi.org/10.1371/journal.pone.0193426 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Ochavillo, D., Tofaeono, S., Sabater, M. & Trip, E. L. Population structure of Ctenochaetus striatus (Acanthuridae) in Tutuila, American Samoa: The use of size-at-age data in multi-scale population size surveys. Fish. Res. 107, 14–21, https://doi.org/10.1016/j.fishres.2010.10.001 (2011).

    Article  Google Scholar 

  • 83.

    Moore, B., Alefaio, S. & Siaosi, F. Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change: Funafuti Atoll, Tuvalu. Report No. Assessment Report N°2, April-May 2013, 100 (2014).

    Google Scholar 

  • 84.

    Moore, B. et al. Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change: Majuro Atoll, Republic of the Marshall Islands. Report No. Assement Report N°2, July-August 2013, 112 (2014).

    Google Scholar 

  • 85.

    Moore, B. et al. Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change: Northern Manus Outer Islands, Papua New Guinea. Report No. Assessment Report N°2, April-June 2014, 119 (2015).

  • 86.

    Hubble, M. The ecological significance of body size in tropical wrasses (Pisces: Labridae), James Cook University, (2003).

  • 87.

    Pothin, K., Letourneur, Y. & Lecomte-Finiger, R. Age, growth and mortality of the tropical grouper Epinephelus merra (Pisces, Serranidae) on Réunion Island, SW Indian ocean. VIe Milieu 54, 193–202 (2004).

    Google Scholar 

  • 88.

    Rhodes, K. L., Taylor, B. M. & McIlwain, J. L. Detailed demographic analysis of an Epinephelus polyphekadion spawning aggregation and fishery. Mar. Ecol. Prog. Ser. 421, 183–198, https://doi.org/10.3354/meps08904 (2011).

    ADS  Article  Google Scholar 

  • 89.

    Grandcourt, E. Demographic characteristics of selected epinepheline groupers (family: Serranidae; subfamily: Epinephelinae) from Aldabra Atoll, Seychelles. Atoll Res. Bull., https://doi.org/10.5479/si.00775630.539.199 (2005).

  • 90.

    Ohta, I., Akita, Y., Uehara, M. & Ebisawa, A. Age-based demography and reproductive biology of three Epinephelus groupers, E. polyphekadion, E. tauvina, and E. howlandi (Serranidae), inhabiting coral reefs in Okinawa. Environ. Biol. Fishes 100, 1451–1467, https://doi.org/10.1007/s10641-017-0655-5 (2017).

    Article  Google Scholar 

  • 91.

    Shimose, T. & Nanami, A. Age, growth, and reproductive biology of blacktail snapper, Lutjanus fulvus, around the Yaeyama Islands, Okinawa, Japan. Ichthyol. Res. 61, 322–331, https://doi.org/10.1007/s10228-014-0401-3 (2014).

    Article  Google Scholar 

  • 92.

    Mehanna, S., Osman, A., Farrag, M. & Osman, Y. Age and growth of three common species of goatfish exploited by artisanal fishery in Hurghada fishing area, Egypt. J. Appl. Ichthyol. 34, 917–921, https://doi.org/10.1111/jai.13590 (2018).

    Article  Google Scholar 

  • 93.

    Heupel, M. R. et al. Demography of a large exploited grouper, Plectropomus laevis: Implications for fisheries management. Mar. Freshw. Res. 61, 184–195, https://doi.org/10.1071/MF09056 (2010).

    CAS  Article  Google Scholar 

  • 94.

    Taylor, B. M., Gourley, J. & Trianni, M. S. Age, growth, reproductive biology and spawning periodicity of the forktail rabbitfish (Siganus argenteus) from the Mariana Islands. Mar. Freshw. Res. 68, 1088–1097, https://doi.org/10.1071/MF16169 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution