in

Interacting effects of insect and ungulate herbivory on Scots pine growth

  • 1.

    Moreira, X. et al. Specificity of induced defenses, growth, and reproduction in lima bean (Phaseolus lunatus) in response to multispecies herbivory. Am. J. Bot. 102, 1300–1308 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Danell, K., Bergström, R. & Edenius, L. Effects of large mammalian browsers on architecture, biomass, and nutrients of woody plants. J. Mammal. 75, 833–844 (1994).

    Article  Google Scholar 

  • 3.

    Kaitaniemi, P., Neuvonen, S. & Nyyssönen, T. Effects of cumulative defoliations on growth, reproduction, and insect resistance in mountain birch. Ecology 80, 524–532 (1999).

    Article  Google Scholar 

  • 4.

    den Herder, M., Bergström, R., Niemelä, P., Danell, K. & Lindgren, M. Effects of natural winter browsing and simulated summer browsing by moose on growth and shoot biomass of birch and its associated invertebrate fauna. Ann. Zool. Fennici 46, 63–74 (2009).

    Article  Google Scholar 

  • 5.

    Wallgren, M., Bergquist, J., Bergström, R. & Eriksson, S. Effects of timing, duration, and intensity of simulated browsing on Scots pine growth and stem quality. Scand. J. For. Res. 29, 734–746 (2014).

    Article  Google Scholar 

  • 6.

    Schwenk, W. S. & Strong, A. M. Contrasting patterns and combined effects of moose and insect herbivory on striped maple (Acer pensylvanicum). Basic Appl. Ecol. 12, 64–71 (2011).

    Article  Google Scholar 

  • 7.

    Muiruri, E. W., Milligan, H. T., Morath, S. & Koricheva, J. Moose browsing alters tree diversity effects on birch growth and insect herbivory. Funct. Ecol. 29, 724–735 (2015).

    Article  Google Scholar 

  • 8.

    van Zandt, P. A. & Agrawal, A. A. Community-Wide impacts of herbivore-induced plant responses in milkweed (Asclepias syriaca). Ecology 85, 2616–2629 (2004).

    Article  Google Scholar 

  • 9.

    Erb, M., Robert, C. A. M., Hibbard, B. E. & Turlings, T. C. J. Sequence of arrival determines plant-mediated interactions between herbivores. J. Ecol. 99, 7–15 (2011).

    Article  Google Scholar 

  • 10.

    Kafle, D., Hänel, A., Lortzing, T., Steppuhn, A. & Wurst, S. Sequential above- and belowground herbivory modifies plant responses depending on herbivore identity. BMC Ecol. 17, 1–10 (2017).

    Article  Google Scholar 

  • 11.

    Stephens, A. E. A., Srivastava, D. S. & Myers, J. H. Strength in numbers? Effects of multiple natural enemy species on plant performance. Proc. R. Soc. B Biol. Sci. 280, 20122756 (2013).

    Article  Google Scholar 

  • 12.

    Gagic, V. et al. Interactive effects of pests increase seed yield. Ecol. Evol. 6, 2149–2157 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Strauss, S. Y. Direct, indirect, and cumulative effects of three native herbivores on a shared host plant. Ecology 72, 543–558 (1991).

    Article  Google Scholar 

  • 14.

    Gómez, J. M. & González-Megías, A. Asymmetrical interactions between ungulates and phytophagous insects: being different matters. Ecology 83, 203–211 (2002).

    Article  Google Scholar 

  • 15.

    Ohgushi, T. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).

    Article  Google Scholar 

  • 16.

    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Hilker, M. et al. Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. 91, 1118–1133 (2016).

    PubMed  Article  Google Scholar 

  • 18.

    Lyytikäinen-Saarenmaa, P. The responses of scots pine, Pinus silvestris, to natural and artificial defoliation stress. Ecol. Appl. 9, 469–474 (1999).

    Article  Google Scholar 

  • 19.

    Ericsson, A., Larsson, S. & Tenow, O. Effects of early and late season defoliation on growth and carbohydrate dynamics in scots pine. J. Appl. Ecol. 17, 747–769 (1980).

    Article  Google Scholar 

  • 20.

    Edenius, L. Browsing by moose on Scots pine in relation to plant resource availability. Ecology 74, 2261–2269 (1993).

    Article  Google Scholar 

  • 21.

    Nordkvist, M. et al. Trait-mediated indirect interactions: Moose browsing increases sawfly fecundity through plant-induced responses. Ecol. Evol. 9, 10615–10629 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Edenius, L., Danell, K. & Nyquist, H. Effects of simulated moose browsing on growth, mortality, and fecundity in Scots pine: relations to plant productivity. Can. J. For. Res. 25, 529–535 (1995).

    Article  Google Scholar 

  • 23.

    Honkanen, T., Haukioja, E. & Kitunen, V. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13, 126–140 (1999).

    Article  Google Scholar 

  • 24.

    Persson, I. L., Bergström, R. & Danell, K. Browse biomass production and regrowth capacity after biomass loss in deciduous and coniferous trees: Responses to moose browsing along a productivity gradient. Oikos 116, 1639–1650 (2007).

    Article  Google Scholar 

  • 25.

    Belsky, A. J. Does herbivory benefit plants? A review of the evidence. Am. Nat. 127, 870–892 (1986).

    Article  Google Scholar 

  • 26.

    Bergman, M. Can saliva from moose, Alces alces, affect growth responses in the salow, Salix caprea?. Oikos 96, 164–168 (2002).

    Article  Google Scholar 

  • 27.

    Ohse, B. et al. Salivary cues: simulated roe deer browsing induces systemic changes in phytohormones and defence chemistry in wild-grown maple and beech saplings. Funct. Ecol. 31, 340–349 (2017).

    Article  Google Scholar 

  • 28.

    Kollberg, I. et al. Temperature affects insect outbreak risk through tritrophic interactions mediated by plant secondary compounds. Ecosphere 6, 1–17 (2015).

    Article  Google Scholar 

  • 29.

    Lyytikäinen-Saarenmaa, P. & Tomppo, E. Impact of sawfly defoliation on growth of Scots pine Pinus sylvestris (Pinaceae) and associated economic losses. Bull. Entomol. Res. 92, 137–140 (2002).

    PubMed  Article  Google Scholar 

  • 30.

    Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).

    Article  Google Scholar 

  • 31.

    Edenius, L., Bergman, M., Ericsson, G. & Danell, K. The role of moose as a disturbance factor in managed boreal forests. Silva Fennica 36, 57–67 (2002).

    Article  Google Scholar 

  • 32.

    Hódar, J. A., Zamora, R., Castro, J., Gómez, J. M. & García, D. Biomass allocation and growth responses of Scots pine saplings to simulated herbivory depend on plant age and light availability. Plant Ecol. 197, 229–238 (2008).

    Article  Google Scholar 

  • 33.

    Bergström, R. & Hjeljord, O. Moose and vegetation interactions in northwestern Europe and Poland. Swedish Wildl. Res. Suppl. 1, 213–228 (1987).

    Google Scholar 

  • 34.

    Nilsson, U., Berglund, M., Bergquist, J., Holmström, H. & Wallgren, M. Simulated effects of browsing on the production and economic values of Scots pine (Pinus sylvestris) stands. Scand. J. For. Res. 31, 279–285 (2016).

    Article  Google Scholar 

  • 35.

    Långsström, B. & Hellqvist, C. Effects of different pruning regimes on growth and sapwood area of Scots pine. For. Ecol. Manag. 44, 239–254 (1991).

    Article  Google Scholar 

  • 36.

    Mathisen, K. M., Milner, J. M. & Skarpe, C. Moose-tree interactions: rebrowsing is common across tree species. BMC Ecol. 17, 1–15 (2017).

    Article  Google Scholar 

  • 37.

    Bergqvist, G., Bergström, R. & Edenius, L. Effects of moose (Alces alces) rebrowsing on damage development in young stands of Scots pine (Pinus sylvestris). For. Ecol. Manag. 176, 397–403 (2003).

    Article  Google Scholar 

  • 38.

    Bergqvist, G., Bergström, R. & Edenius, L. Patterns of stem damage by moose (Alces alces) in young Pinus sylvestris stands in Sweden. Scand. J. For. Res. 16, 363–370 (2001).

    Article  Google Scholar 

  • 39.

    Riipi, M., Lempa, K., Haukioja, E., Ossipov, V. & Pihlaja, K. Effects of simulated winter browsing on mountain birch foliar chemistry and on the performance of insect herbivores. Oikos 111, 221–234 (2005).

    Article  Google Scholar 

  • 40.

    Kupferschmid, A. D. & Bugmann, H. Timing, light availability and vigour determine the response of Abies alba saplings to leader shoot browsing. Eur. J. For. Res. 132, 47–60 (2013).

    Article  Google Scholar 

  • 41.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 42.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1–142. https://CRAN.R-project.org/package=nlme (2019).

  • 43.

    Fox, J. & Weisberg, F. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. (2019).

  • 44.

    Darling, E. S., Mcclanahan, T. R. & Côté, I. M. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv. Lett. 3, 122–130 (2010).

    Article  Google Scholar 

  • 45.

    Bansal, S., Hallsby, G., Löfvenius, M. O. & Nilsson, M. C. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 33, 451–463 (2013).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    To boost emissions reductions from electric vehicles, know when to charge

    Discovery allows early detection of shade avoidance syndrome