in

Interactions between the imperiled West Indian manatee, Trichechus manatus, and mosquitoes (Diptera: Culicidae) in Everglades National Park, Florida, USA

[adace-ad id="91168"]
  • 1.

    Manguin, S. & Boete, C. Global impact of mosquito biodiversity, human vector-borne diseases and environmental change. In The Importance of Biological Interactions in the Study of Biodiversity (ed. López-Pujol, J.) 27–50 (InTechOpen, London, 2011).

    Google Scholar 

  • 2.

    Downes, J. A. The biting habits of blood-feeding flies and their significance in classification. Annu. Rev. Entomol. 3, 249–266 (1958).

    Google Scholar 

  • 3.

    Reeves, L. E. et al. Identification of Uranotaenia sapphirina as a specialist of annelids broadens known mosquito host use patterns. Commun. Biol. 1, 92 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Borkent, A. & Belton, P. Attraction of female Uranotaenia lowii (Diptera: Culicidae) to frog calls in Costa Rica. Can. Entomol. 138, 91–94 (2006).

    Google Scholar 

  • 5.

    Toma, T., Miyagi, I. & Tamashiro, M. Blood meal identification and feeding habits of Uranotaenia species collected in the Ryukyu Archipelago. J. Am. Mosq. Control 30, 215–218 (2014).

    Google Scholar 

  • 6.

    Sorokin, A. & Steigerwald, E. Ameerega trivittata (three-striped poison frog) ecto-parasitism. Herpetol. Rev. 48, 407–408 (2017).

    Google Scholar 

  • 7.

    Okudo, H. et al. A crab-hole mosquito, Ochlerotatus baisasi, feeding on mudskipper (Gobiidae: Oxudercinae) in the Ryukyu Islands, Japan. J. Am. Mosq. Control 20, 134–137 (2004).

    Google Scholar 

  • 8.

    Miyake, T. et al. Bloodmeal host identification with inferences to feeding habits of a fish-fed mosquito, Aedes baisasi. Sci. Rep. 9, 4002 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Unlu, I., Kramer, W. L., Roy, A. F. & Foil, L. D. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana. J. Med. Entomol. 47, 625–633 (2010).

    CAS  PubMed  Google Scholar 

  • 10.

    Reeves, L. E., Connelly, C. R. & Krysko, K. L. Crocodylus acutus (American crocodile) ectoparasites. Herpetol. Rev. 50, 131–132 (2019).

    Google Scholar 

  • 11.

    Cupp, E. W. et al. Identification of reptilian and amphibian blood meals from mosquitoes in an Eastern equine encephalomyelitis virus focus in central Alabama. Am. J. Trop. Med. Hyg. 71, 272–276 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Burkett-Cadena, N. D. et al. Blood feeding patterns of potential arbovirus vectors of the genus Culex targeting ectothermic hosts. Am. J. Trop. Med. Hyg. 79, 809–815 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Reeves, L. E. et al. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida, USA. PLoS ONE 13, e0190633 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Buck, C. et al. Isolation of St. Louis encephalitis virus from a killer whale. Clin. Diagn. Virol. 1, 109–112 (1993).

    CAS  PubMed  Google Scholar 

  • 15.

    Leger, J. S. et al. West Nile infection in killer whale, Texas, USA, 2007. Emerg. Infect. Dis. 17(8), 1531–1533 (2011).

    Google Scholar 

  • 16.

    Schaefer, A. M. et al. Serological evidence of exposure to selected viral, bacterial, and protozoal pathogens in free-ranging Atlantic bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon, Florida, and Charleston, South Carolina. Aquat. Mamm. 35, 163–170 (2009).

    Google Scholar 

  • 17.

    Jett, J. & Ventre, J. Orca (Orcinus orca) captivity and vulnerability to mosquito-transmitted viruses. J. Mar. Anim. Ecol. 5, 9–16 (2012).

    Google Scholar 

  • 18.

    Hribar, L., DeMay, D. J. & Lund, U. J. The association between meteorological variables and the abundance of Aedes taeniorhynchus in the Florida Keys. J. Vector Ecol. 35, 339–346 (2010).

    PubMed  Google Scholar 

  • 19.

    Yee, D. A., Himel, E., Reiskind, M. H. & Vamosi, S. M. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus). Med. Vet. Entomol. 28, 60–69 (2014).

    CAS  PubMed  Google Scholar 

  • 20.

    Darsie, R. F. Jr. & Morris, C. D. Keys to the Adult Females and Fourth Instar Larvae of the Mosquitoes of Florida (Diptera, Culicidae) (Florida Mosquito Control Association, Buckingham, 2003).

    Google Scholar 

  • 21.

    Hoyer, I. J., Blosser, E. M., Acevedo, C., Reeves, L. E. & Burkett-Cadena, N. D. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol. Lett. 13, 20170353 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Cummins, B., Cortez, R., Foppa, I. M., Walbeck, J. & Hyman, J. H. A spatial model of mosquito host-seeking behavior. PLOS Comput. Biol. 8, e1002500 (2012).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Gillies, M. T. & Wilkes, T. J. The range of attraction of single baits for some West African mosquitoes. Bull. Entomol. Res. 60, 225–235 (1970).

    CAS  PubMed  Google Scholar 

  • 24.

    Lehane, M. J. The Biology of Blood-Sucking in Insects 2nd edn. (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  • 25.

    Edman, J. A. Host-feeding patterns of Florida mosquitoes (Diptera: Culicidae) VI. Culex (Melanoconion). J. Med. Entomol. 15, 521–525 (1979).

    CAS  PubMed  Google Scholar 

  • 26.

    Burkett-Cadena, N. D., Hoyer, I., Blosser, E. & Reeves, L. Human-powered pop-up resting shelter for sampling cavity-resting mosquitoes. Acta Trop. 190, 288–292 (2019).

    PubMed  Google Scholar 

  • 27.

    Reeves, L. E., Hoyer, I., Acevedo, C. & Burkett-Cadena, N. D. Host associations of Culex (Melanoconion) atratus (Diptera: Culicidae) and Culex (Melanoconion) pilosus from Florida, USA. Insects 10, 239 (2019).

    PubMed Central  Google Scholar 

  • 28.

    Blosser, E., Stenn, T., Acevedo, C. & Burkett-Cadena, N. D. Host use and seasonality of Culex (Melanoconion) iolambdis (Diptera: Culicidae) from eastern Florida, USA. Acta Trop. 164, 352–359 (2016).

    PubMed  Google Scholar 

  • 29.

    Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J.-C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 49, 141–174 (2004).

    CAS  PubMed  Google Scholar 

  • 30.

    King, W. V., Bradley, G. H. & McNeel, T. E. The Mosquitoes of the Southeastern States, United States Department of Agriculture Miscellaneous Publication No. 336. (Agricultural Research Service, 1944).

  • 31.

    DeMay, D. J. & Hribar, L. J. Mosquito fauna of Key Largo, Florida. J. Am. Mosq. Control 24, 471–477 (2008).

    Google Scholar 

  • 32.

    Bidlingmayer, W. L. & Haeger, J. S. Distribution and abundance. In Bionomics and physiology of Aedes taeniorhynchus and Aedes sollicitans, the salt marsh mosquitoes of Florida, Bulletin 852 (ed. Nayar, J. K.) 14–17 (Florida Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 1985).

    Google Scholar 

  • 33.

    Kline, D. L. & LeMire, G. F. Field evaluation of heat as an attractant to traps baited with carbon dioxide and octenol for Aedes taeniorhynchus. J. Am. Mosq. Control Assoc. 11, 454–456 (1995).

    CAS  PubMed  Google Scholar 

  • 34.

    Edman, J. A. Host-feeding patterns of Florida mosquitoes (Diptera: Culicidae) I. Aedes, Anopheles, Coquillettidia, Mansonia and Psorophora. J. Med. Entomol. 8, 687–695 (1971).

    CAS  PubMed  Google Scholar 

  • 35.

    O’Meara, G. F. & Edman, J. A. Autogenous egg production in the salt-marsh mosquito, Aedes taeniorhynchus. Biol. Bull. 149, 384–396 (1975).

    PubMed  Google Scholar 

  • 36.

    Edman, J. A. Blood-feeding behavior. In Bionomics and physiology of Aedes taeniorhynchus and Aedes sollicitans, the salt marsh mosquitoes of Florida, Bulletin 852 (ed. Nayar, J. K.) 95–103 (Florida Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 1985).

    Google Scholar 

  • 37.

    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. USA 14, 2418–2422 (2012).

    ADS  Google Scholar 

  • 38.

    McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. B 282, 20150120 (2015).

    PubMed  Google Scholar 

  • 39.

    Willson, J. D., Dorcas, M. E. & Snow, R. W. Identifying plausible scenarios for the establishment of invasive Burmese pythons (Python molurus) in Southern Florida. Biol. Invasions 13, 1493–1504 (2011).

    Google Scholar 

  • 40.

    Ramasamy, R. & Surendran, S. N. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Front. Physiol. 3, 198 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Lobuda, M. & Kozuch, O. Amplification of arbovirus transmission by mosquito intradermal probing and interrupted feeding. Acta Virol. 33, 63–67 (1989).

    Google Scholar 

  • 42.

    Styer, L. M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLOS Pathog. 3, e132 (2007).

    PubMed Central  Google Scholar 

  • 43.

    Sulzner, K. et al. Health assessment and seroepidemiologic survey of potential pathogens in wild Antillean manatees (Trichechus manatus manatus). PLoS ONE 7, e44517 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Keller, M., Long, M. T., Francis-Floyd, R. & Isaza, R. A serologic survey of Florida manatees (Trichechus manatus latirostris) for West Nile virus and development of a competitive inhibition ELISA. In Proceedings of 35th Annual International Associations for Aquatic Animal Medicine Conference, Galveston, TX (2004).

  • 45.

    Dalton, L. M., Dickerson, S. & Wigdahl, D. A serosurvey for West Nile virus at SeaWorld San Antonio, San Antonio, TX. In Proceedings of 35th Annual International Associations for Aquatic Animal Medicine Conference, Galveston, TX (2004).

  • 46.

    Del Piero, F., Stremme, D. W., Habecker, P. L. & Cantile, C. West Nile flavivirus polioencephalomyelitis in a harbor seal (Phoca vitulina). Vet. Pathol. 43, 58–61 (2006).

    PubMed  Google Scholar 

  • 47.

    McBride, M. P. et al. Eastern equine encephalitis in a harbor seal. J. Zoo. Wildl. Med. 39, 631–637 (2008).

    PubMed  Google Scholar 

  • 48.

    Parker, B. M. Density and distribution of Dirofilaria immitis (Nematoda: Filarioidea) third-stage larvae in Aedes sollicitans and Aedes taeniorhynchus (Diptera: Culicidae). J. Med. Entomol. 37, 695–700 (2000).

    CAS  PubMed  Google Scholar 

  • 49.

    Hribar, L. J. et al. Isolation of West Nile virus from mosquitoes (Diptera: Culicidae) in the Florida Keys, Monroe County, Florida. Caribb. J. Sci. 40, 362–367 (2004).

    Google Scholar 

  • 50.

    Smith, D. R., Arrigo, N. C., Leal, G., Muehlberger, L. E. & Weaver, S. C. Infection and dissemination of Venezuelan equine encephalitis virus in the epidemic mosquito vector, Aedes taeniorhynchus. Am. J. Trop. Med. Hyg. 77, 176–187 (2007).

    PubMed  Google Scholar 

  • 51.

    Mayne, B. & Griffitts, T. H. D. Anopheles atropos D. & K.: A new potential carrier of malaria organisms. Public Health Rep. 46, 3107–3115 (1931).

    Google Scholar 

  • 52.

    De Mucha Macias, J. & Gonzalez, M. Venezuelan equine encephalitis. Study of a strain isolated in Mexico. Rev. Investig. Salud Publica 27, 85–110 (1967).

    Google Scholar 

  • 53.

    Scherer, W. F. et al. Ecologic studies of Venezuelan encephalitis virus in southeastern México. III. Infection of mosquitoes. Am. J. Trop. Med. Hyg. 20, 969–979 (1971).

    CAS  PubMed  Google Scholar 

  • 54.

    Scott, M. D., Irvine, A. B. & Wells, R. S. A long-term study of bottlenose dolphins on the west coast of Florida. In The Bottlenose Dolphin (eds Leatherwood, S. & Reeves, R. R.) 235–244 (Academic Press, New York, 1990).

    Google Scholar 

  • 55.

    Mate, B. R. et al. Satellite-monitored movements and dive behavior of a bottlenose dolphin (Tursiops truncatus) in Tampa Bay, Florida. Mar. Mammal Sci. 11, 452–463 (1995).

    Google Scholar 

  • 56.

    Lothrop, H. D. & Reisen, W. K. Landscape affects the host-seeking patterns of Culex tarsalis (Diptera: Culicidae) in the Coachella Valley of California. J. Med. Entomol. 38, 325–332 (2001).

    CAS  PubMed  Google Scholar 

  • 57.

    Van Bressem, M.-F. et al. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Dis. Aquat. Organ. 86, 143–157 (2009).

    PubMed  Google Scholar 

  • 58.

    Bossart, G. D., Fair, P., Schaefer, A. M. & Reif, J. S. Health and environmental risk assessment project for bottlenose dolphins Tursiops truncatus from the southeastern USA. I. Infectious diseases. Dis. Aquat. Mamm. 125, 141–153 (2017).

    CAS  Google Scholar 

  • 59.

    Bossart, G. D. & Duignan, P. J. Emerging viruses in marine mammals. CAB Rev. 13, 052 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia