in

Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming

  • 1.

    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep.6, 38402 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Hughes, T. P. et al. Spatial temporal patterns of mass bleaching of corals in the Anthropocene. Science359, 80–83 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res.50, 839–866 (1999).

    Google Scholar 

  • 4.

    Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Guldberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol.11, 2251–2265 (2005).

    ADS  Google Scholar 

  • 5.

    Goreau, T. J. & Hayes, R. Coral bleaching and ocean “hot spots.”. Ambio23, 176–180 (1994).

    Google Scholar 

  • 6.

    Veron, J. E. N. et al. The coral reef crisis: the critical importance of <350 ppm CO2. Mar. Pollut. Bull.58(10), 1428–1436 (2009).

    CAS  PubMed  Google Scholar 

  • 7.

    Eakin, C. M., Lough, J. M. & Heron, S. F. Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds Van Oppen, M. J. H. & Lough, J. M.) 41–67 (Springer, Berlin, 2009).

    Google Scholar 

  • 8.

    Couch, C. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE12(9), e0185121 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol.2, 495–509 (1996).

    ADS  Google Scholar 

  • 10.

    Wilkinson, C. Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, 2008).

    Google Scholar 

  • 11.

    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol.20(12), 3823–3833 (2014).

    ADS  Google Scholar 

  • 12.

    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. Biol. Sci.282, 1887 (2015).

    Google Scholar 

  • 13.

    Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature568, 387–390 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Strong, A. E., Arzayus, F., Skirving, W. & Heron, S. F. Chapter 9: Identifying coral bleaching remotely via Coral Reef Watch—improved integration and implications for climate change. In Coral Reefs and Climate Change: Science and Management (eds Phinney, J. T. et al.) (American Geophysical Union, Washington, DC, 2006).

    Google Scholar 

  • 15.

    Kayanne, H. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. Coral Reefs36, 63–70 (2017).

    ADS  Google Scholar 

  • 16.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature463, 747–756 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    van Vuuren, D. et al. How well do integrated assessment models simulate climate change?. Clim. Change104(2), 255–285 (2011).

    ADS  Google Scholar 

  • 18.

    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change3, 1–4 (2013).

    Google Scholar 

  • 19.

    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep.6, 33966 (2016).

    Google Scholar 

  • 20.

    Wolanski, E. & Pickard, G. L. Upwelling by internal tides and Kelvin waves at the continental shelf break on the Great Barrier Reef. Aust. J. Mar. Res.34, 65–80 (1983).

    Google Scholar 

  • 21.

    Wolanski, E. & Delesalle, B. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res.15, 357–368 (1995).

    ADS  Google Scholar 

  • 22.

    Novozhilov, A. V., Chernova, Y. N., Tsukurov, I. A., Densivo, V. A. & Propp, L. N. Characteristics of oceanographic processes on reefs of the Seychelles Islands. Atoll Res. Bull.366, 1–36 (1992).

    Google Scholar 

  • 23.

    Leichter, J. J., Wing, S. R., Miller, S. L. & Denny, M. W. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr.41, 1490–1501 (1996).

    ADS  CAS  Google Scholar 

  • 24.

    Storlazzi, C. D. & Jaffe, B. E. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii. Estur. Coast Shelf Sci.77(4), 549–564 (2008).

    ADS  Google Scholar 

  • 25.

    Roder, C. et al. Metabloic plasticity of the corals Porites lutea and Diploastrea helipora exposed to large amplitude internal waves. Coral Reefs30(1), 57–69 (2011).

    ADS  Google Scholar 

  • 26.

    Storlazzi, C. D., Field, M. E., Cheriton, O. M., Presto, M. K. & Logan, J. B. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas. Coral Reefs32, 949–961 (2013).

    ADS  Google Scholar 

  • 27.

    Wall, M. et al. Large-amplitude internal waves benefit corals during thermal stress. Proc. R. Soc. B282, 20140650 (2014).

    Google Scholar 

  • 28.

    Schmidt, G. M., Wall, M., Taylor, M., Jantzen, C. & Richter, C. Large-amplitude internal waves sustain coral health during thermal stress. Coral Reefs35, 869–881 (2016).

    ADS  Google Scholar 

  • 29.

    Wyatt, A. S. J. et al. Internal waves mitigate heat accumulation on coral reefs. Nat. Geosci.13, 28–34 (2020).

    ADS  CAS  Google Scholar 

  • 30.

    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commmun.9, 1671 (2018).

    ADS  Google Scholar 

  • 31.

    Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. https://doi.org/10.17882/42182 (2000).

  • 32.

    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr.82, 81–100 (2009).

    ADS  Google Scholar 

  • 33.

    Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L. & Simmons, H. L. Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr.46, 1657–1684 (2016).

    ADS  Google Scholar 

  • 34.

    Zaron, E. D. Mapping the nonstationary internal tide with satellite altimetry. J. Geophys. Res. Oceans122, 539–554 (2017).

    ADS  Google Scholar 

  • 35.

    Lamb, K. G. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Ann. Rev. Fluid Mech.46(1), 231–254 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  • 36.

    Hoeke, R. K. et al. Coral reef ecosystem integrated observing system: in-situ oceanographic observations at the US Pacific islands and atolls. J. Oper. Oceanogr.2(2), 3–14 (2009).

    Google Scholar 

  • 37.

    Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA coral reef watch program’s near-real-time satellite global coral bleaching monitoring activities. In 10th International Coral Reef Symposium, 1783–1793 (2006)

  • 38.

    DeCarlo, T. M., Karnauskas, K. B., Davis, K. A. & Wong, G. T. F. Climate modulates internal wave activity in the Northern South China Sea. Geophys. Res. Lett.42, 831–838 (2015).

    ADS  Google Scholar 

  • 39.

    Zhao, Z. Internal tide oceanic tomography. Geophys. Res. Lett.42, 9157–9164 (2016).

    ADS  Google Scholar 

  • 40.

    Shope, J. B., Storlazzi, C. D., Erikson, L. H. & Hegermiller, C. A. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability. Glob. Planet. Change141, 25–38 (2016).

    ADS  Google Scholar 

  • 41.

    Susanto, R. D., Mitnik, L. & Zheng, Q. Internal waves observed in the Lombok Strait. Oceanography18, 80–87 (2005).

    Google Scholar 

  • 42.

    Jackson, C. Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). J. Geophys. Res.112, C11012 (2007).

    ADS  Google Scholar 

  • 43.

    Briggs, J. C. The marine East Indies: diversity and speciation. J. Biogeogr.32, 1517–1522 (2005).

    Google Scholar 

  • 44.

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk, revisited (World Resources Institute, Washington, DC, 2011).

    Google Scholar 

  • 45.

    Keppel, G. & Kavousi, J. Effective climate change refugia for coral reefs. Glob. Change Biol.21, 2829–2830 (2015).

    ADS  Google Scholar 

  • 46.

    Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Change Biol.21, 2272–2282 (2015).

    ADS  Google Scholar 

  • 47.

    Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci.100, 8074–8079 (2013).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming