in

Interpreting ancient food practices: stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment

  • 1.

    Hastorf, C. A. The Social Archaeology of Food: Thinking About Eating From Prehistory to the Present (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 2.

    Lévi-Strauss, C. The culinary triangle. Partisan Review33, 586–595 (1966).

    Google Scholar 

  • 3.

    Wrangham, R. W. Catching Fire: How Cooking Made Us Human (Basic Books Inc, New York, 2009).

    Google Scholar 

  • 4.

    Roffet-Salque, M. et al. From the inside out: upscaling organic residue analyses of archaeological ceramics. J. Archaeol. Sci.16, 627–640 (2017).

    Google Scholar 

  • 5.

    Appadurai, A. Gastro-Politics in Hindu South Asia. Am. Ethnol.8, 494–511 (1981).

    Google Scholar 

  • 6.

    Douglas, M. Deciphering a meal. In Food and Culture: A Reader (eds Counihan, C. & Van Esterik, P.) 44–53 (Routledge, New York, 2008).

    Google Scholar 

  • 7.

    Twiss, K. The Archaeology of Food and Identity (Center for Archaeological Investigations, Southern Illinois University at Carbondale, Carbondale, 2007).

    Google Scholar 

  • 8.

    Rozin, P. Psychobiological perspectives on food preferences and avoidances. In Food and Evolution (eds Harris, M. & Ross, E. B.) 181–205 (Temple University Press, Philadelphia, 1987).

    Google Scholar 

  • 9.

    Condamin, J., Formenti, F., Metais, M. O., Michel, M. & Blond, P. The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry18, 195–201 (1976).

    Google Scholar 

  • 10.

    Passi, S., Rothschild-Boros, M. C., Fasella, P., Nazzaro-Porro, M. & Whitehouse, D. An application of high performance liquid chromatography to analysis of lipids in archaeological samples. J. Lipid Res.22, 778–784 (1981).

    PubMed  CAS  Google Scholar 

  • 11.

    Hastorf, C. A. & DeNiro, M. J. Reconstruction of prehistoric plant production and cooking practices by a new isotopic method. Nature315, 489–491 (1985).

    ADS  CAS  Google Scholar 

  • 12.

    Patrick, M., de Koning, A. J. & Smith, A. B. Gas liquid chromatographic analysis of fatty acids in food residues from ceramics found in the Southwestern Cape, South Africa. Archaeometry27, 231–236 (1985).

    CAS  Google Scholar 

  • 13.

    Evershed, R. P., Heron, C. & Goad, L. J. Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity65, 540–544 (1991).

    Google Scholar 

  • 14.

    Morton, J. D. & Schwarcz, H. P. Palaeodietary implications from stable isotopic analysis of residues on prehistoric Ontario ceramics. J. Archaeol. Sci.31, 503–517 (2004).

    Google Scholar 

  • 15.

    Heron, C., Evershed, R. P. & Goad, L. J. Effects of migration of soil lipids on organic residues associated with buried potsherds. J. Archaeol. Sci.18, 641–659 (1991).

    Google Scholar 

  • 16.

    Dudd, S. N., Evershed, R. P. & Gibson, A. M. Evidence for varying patterns of exploitation of animal products in different prehistoric pottery traditions based on lipids preserved in surface and absorbed residues. J. Archaeol. Sci.26, 1473–1482 (1999).

    Google Scholar 

  • 17.

    Hart, J. P., Lovis, W. A., Schulenberg, J. K. & Urquhart, G. R. Paleodietary implications from stable carbon isotope analysis of experimental cooking residues. J. Archaeol. Sci.34, 804–813 (2007).

    Google Scholar 

  • 18.

    Hansel, F. A., Copley, M. S., Madureira, L. A. S. & Evershed, R. P. Thermally produced ω-(o-alkylphenyl)alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Lett.45, 2999–3002 (2004).

    CAS  Google Scholar 

  • 19.

    Hansel, F. A. & Evershed, R. P. Formation of dihydroxy acids from Z-monounsaturated alkenoic acids and their use as biomarkers for the processing of marine commodities in archaeological pottery vessels. Tetrahedron Lett.50, 5562–5564 (2009).

    CAS  Google Scholar 

  • 20.

    Evershed, R. P. Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry50, 895–924 (2008).

    CAS  Google Scholar 

  • 21.

    Copley, M. S., Hansel, F. A., Sadr, K. & Evershed, R. P. Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa : research article. S. Afr. J. Sci.100, 279–283 (2004).

    CAS  Google Scholar 

  • 22.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta42, 495–506 (1978).

    ADS  CAS  Google Scholar 

  • 23.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta45, 341–351 (1981).

    ADS  CAS  Google Scholar 

  • 24.

    Heron, C. & Craig, O. E. Aquatic resources in foodcrusts: identification and implication. Radiocarbon57, 707–719 (2015).

    Google Scholar 

  • 25.

    Cramp, L. J. E. et al. Immediate replacement of fishing with dairying by the earliest farmers of the northeast Atlantic archipelagos. Proc. R. Soc. B281, 20132372 (2014).

    PubMed  Google Scholar 

  • 26.

    Evershed, R. P. Biomolecular archaeology and lipids. World Archaeol.25, 74–93 (1993).

    PubMed  CAS  Google Scholar 

  • 27.

    Evershed, R. P., Heron, C., Charters, S. & Goad, L. J. The survival of food residues: new methods of analysis, interpretation and application. Proc. Br. Acad.77, 187–208 (1992).

    Google Scholar 

  • 28.

    Copley, M. S. et al. Direct chemical evidence for widespread dairying in prehistoric Britain. PNAS100, 1524–1529 (2003).

    ADS  PubMed  CAS  Google Scholar 

  • 29.

    Evershed, R. P., Arnot, K. I., Collister, J., Eglinton, G. & Charters, S. Application of isotope ratio monitoring gas chromatography–mass spectrometry to the analysis of organic residues of archaeological origin. Analyst119, 909–914 (1994).

    ADS  CAS  Google Scholar 

  • 30.

    Evershed, R. P. et al. Lipids as carriers of anthropogenic signals from prehistory. Philos. Trans. R. Soc. Lond. B354, 19–31 (1999).

    CAS  Google Scholar 

  • 31.

    Dunne, J., Mercuri, A. M., Evershed, R. P., Bruni, S. & di Lernia, S. Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nat. Plants3, 1–6 (2016).

    Google Scholar 

  • 32.

    Roffet-Salque, M. et al. Widespread exploitation of the honeybee by early Neolithic farmers. Nature527, 226–230 (2015).

    ADS  PubMed  CAS  Google Scholar 

  • 33.

    Hammann, S. & Cramp, L. J. E. Towards the detection of dietary cereal processing through absorbed lipid biomarkers in archaeological pottery. J. Archaeol. Sci.93, 74–81 (2018).

    CAS  Google Scholar 

  • 34.

    Evershed, R. P., Copley, M. S., Dickson, L. & Hansel, F. A. Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry50, 101–113 (2008).

    CAS  Google Scholar 

  • 35.

    Craig, O. E. et al. Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry49, 135–152 (2007).

    CAS  Google Scholar 

  • 36.

    Craig, O. E. et al. Earliest evidence for the use of pottery. Nature496, 351–354 (2013).

    ADS  PubMed  CAS  Google Scholar 

  • 37.

    Robson, H. K. et al. Diet, cuisine and consumption practices of the first farmers in the southeastern Baltic. Archaeol. Anthropol. Sci.11, 4011–4024 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Oras, E. et al. The adoption of pottery by north-east European hunter-gatherers: evidence from lipid residue analysis. J. Archaeol. Sci.78, 112–119 (2017).

    CAS  Google Scholar 

  • 39.

    Admiraal, M., Lucquin, A., von Tersch, M., Jordan, P. D. & Craig, O. E. Investigating the function of prehistoric stone bowls and griddle stones in the Aleutian Islands by lipid residue analysis. Quatern. Res.91, 1003–1015 (2019).

    ADS  Google Scholar 

  • 40.

    Spangenberg, J. E., Jacomet, S. & Schibler, J. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland—evidence for dairying in the late Neolithic. J. Archaeol. Sci.33, 1–13 (2006).

    Google Scholar 

  • 41.

    Guiry, E. et al. Differentiating salmonid migratory ecotypes through stable isotope analysis of collagen: archaeological and ecological applications. PLoS ONE15, e0232180 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 42.

    Mukherjee, A. J., Gibson, A. M. & Evershed, R. P. Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds. J. Archaeol. Sci.35, 2059–2073 (2008).

    Google Scholar 

  • 43.

    Shoda, S., Lucquin, A., Ahn, J., Hwang, C. & Craig, O. E. Pottery use by early Holocene hunter-gatherers of the Korean peninsula closely linked with the exploitation of marine resources. Quatern. Sci. Rev.170, 164–173 (2017).

    ADS  Google Scholar 

  • 44.

    Evershed, R. P. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeol.40, 26–47 (2008).

    Google Scholar 

  • 45.

    Grace, R. Review article use-wear analysis: the state of the art. Archaeometry38, 209–229 (1996).

    Google Scholar 

  • 46.

    Oudemans, T. F. Applying organic residue analysis in ceramic studies in archaeology: a functional approach. Leiden J. Pottery Stud.23, 5–20 (2007).

    Google Scholar 

  • 47.

    Skibo, J. M. Pottery use-alteration analysis. In Use-Wear and Residue Analysis in Archaeology (eds Marreiros, J. M. et al.) 189–198 (Springer International Publishing, New York, 2015).

    Google Scholar 

  • 48.

    Marino, B. D. & Deniro, M. J. Isotopic analysis of archaeobotanicals to reconstruct past climates: effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. J. Archaeol. Sci.14, 537–548 (1987).

    Google Scholar 

  • 49.

    Lovis, W. A., Urquhart, G. R., Raviele, M. E. & Hart, J. P. Hardwood ash nixtamalization may lead to false negatives for the presence of maize by depleting bulk δ13C in carbonized residues. J. Archaeol. Sci.38, 2726–2730 (2011).

    Google Scholar 

  • 50.

    Hart, J. P., Urquhart, G. R., Feranec, R. S. & Lovis, W. A. Non-linear relationship between bulk δ13C and percent maize in carbonized cooking residues and the potential of false-negatives in detecting maize. J. Archaeol. Sci.36, 2206–2212 (2009).

    Google Scholar 

  • 51.

    Warinner, C. & Tuross, N. Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications. J. Archaeol. Sci.36, 1690–1697 (2009).

    Google Scholar 

  • 52.

    Warinner, C. Life and Death at Teposcolula Yucundaa: Mortuary, Archaeogenetic, and Isotopic Investigations of the Early Colonial Period in Mexico (Harvard University, New York, 2010).

    Google Scholar 

  • 53.

    Renson, V. et al. Origin and diet of inhabitants of the Pacific Coast of Southern Mexico during the Classic Period—Sr, C and N isotopes. J. Archaeol. Sci. Rep.27, 101981 (2019).

    Google Scholar 

  • 54.

    Szpak, P., Millaire, J.-F., White, C. D. & Longstaffe, F. J. Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). J. Archaeol. Sci.39, 3721–3740 (2012).

    CAS  Google Scholar 

  • 55.

    Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun.5, 1–8 (2014).

    ADS  Google Scholar 

  • 56.

    Yoneyama, T., Ito, O. & Engelaar, W. M. H. G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochem. Rev.2, 121–132 (2003).

    CAS  Google Scholar 

  • 57.

    Bocherens, H. & Drucker, D. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol.13, 46–53 (2003).

    Google Scholar 

  • 58.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between d15N and animal age. Geochim. Cosmochim. Acta48, 1135–1140 (1984).

    ADS  CAS  Google Scholar 

  • 59.

    DeNiro, M. J. & Hastorf, C. A. Alteration of 15N14N and 13C12C ratios of plant matter during the initial stages of diagenesis: studies utilizing archaeological specimens from Peru. Geochim. Cosmochim. Acta49, 97–115 (1985).

    ADS  CAS  Google Scholar 

  • 60.

    Fraser, R. A. et al. Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. J. Archaeol. Sci.40, 4754–4766 (2013).

    CAS  Google Scholar 

  • 61.

    Phillips, D. L., & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia136, 261–269 (2003).

    ADS  PubMed  Google Scholar 

  • 62.

    Drieu, L. et al. Influence of porosity on lipid preservation in the wall of archaeological pottery. Archaeometry61, 1081–1096 (2019).

    CAS  Google Scholar 

  • 63.

    Charters, S. Chemical Analysis of Absorbed Lipids and Laboratory Simulation Experiments to Interpret Archaeological Pottery Vessel Contents and Use (University of Bristol, Bristol, 1996).

    Google Scholar 

  • 64.

    Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci.34, 335–343 (2007).

    Google Scholar 

  • 65.

    Styring, A. K. et al. The effect of charring and burial on the biochemical composition of cereal grains: investigating the integrity of archaeological plant material. J. Archaeol. Sci.40, 4767–4779 (2013).

    CAS  Google Scholar 

  • 66.

    Szpak, P. & Chiou, K. L. A comparison of nitrogen isotope compositions of charred and desiccated botanical remains from northern Peru. Veget Hist Archaeobot https://doi.org/10.1007/s00334-019-00761-2 (2019).

    Article  Google Scholar 

  • 67.

    Casanova, E. et al. Accurate compound-specific 14 C dating of archaeological pottery vessels. Nature580, 506–510 (2020).

    ADS  PubMed  CAS  Google Scholar 

  • 68.

    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. USA113, 6388–6396 (2016).

    PubMed  CAS  Google Scholar 

  • 69.

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv.1, e1400253 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Foley, S. F. et al. The Palaeoanthropocene: the beginnings of anthropogenic environmental change. Anthropocene3, 83–88 (2013).

    Google Scholar 

  • 71.

    Tilman, D. & Lehman, C. Human-caused environmental change: Impacts on plant diversity and evolution. PNAS98, 5433–5440 (2001).

    ADS  PubMed  CAS  Google Scholar 

  • 72.

    Wilk, R. Consumption, human needs, and global environmental change. Glob. Environ. Change12, 5–13 (2002).

    Google Scholar 

  • 73.

    Correa-Ascencio, M. & Evershed, R. P. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Anal. Methods6, 1330–1340 (2014).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Survival and regeneration ability of clonal common milkweed (Asclepias syriaca L.) after a single herbicide treatment in natural open sand grasslands

    Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa