in

Intraspecific diversity as a reservoir for heat-stress tolerance in sweet potato

  • 1.

    Reynolds, M. P. (eds) Climate Change and Crop Production (CABI Publishing, 2010).

  • 2.

    Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl Acad. Sci. USA 117, 2864–2869 (2020).

    CAS  Article  Google Scholar 

  • 3.

    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    CAS  Article  Google Scholar 

  • 4.

    Bellon, M. R., Hodson, D. & Hellin, J. Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc. Natl Acad. Sci. USA 108, 13432–13437 (2011).

    CAS  Article  Google Scholar 

  • 5.

    Driedonks, N., Rieu, I. & Vriezen, W. H. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod. 29, 67–79 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Mercer, K. L. & Perales, H. Evolutionary response of landraces to climate change in centers of crop diversity. Evol. Appl. 3, 480–493 (2010).

    Article  Google Scholar 

  • 7.

    FAOSTAT (FAO, 2020); http://www.fao.org/faostat/en/#home

  • 8.

    Gibson, R., Mwanga, R. O. M., Namanda, S., Jeremiah, S. C. & Barker, I. Review of Sweetpotato Seed Systems in East and Southern Africa Working Paper 2009-1 (International Potato Center, 2009).

  • 9.

    Laurie, R. N., Laurie, S. M., Du Plooy, C. P., Finnie, J. F. & Van Staden, J. Yield of drought-stressed sweet potato in relation to canopy cover, stem length and stomatal conductance. J. Agric. Sci. 7, 201–214 (2015).

    Google Scholar 

  • 10.

    Yang et al. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genomics 21, 164 (2020).

    CAS  Article  Google Scholar 

  • 11.

    Warren, J. F. Typhoons and droughts: food shortages and famine in the Philippines since the seventeenth century. Int. Rev. Environ. Hist. 4, 27–44 (2018).

    Article  Google Scholar 

  • 12.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  • 13.

    Roullier, C. et al. Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.). PLoS ONE 8, e62707 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Kassali, R. Economics of sweet potato production. Int. J. Veg. Sci. 17, 313–321 (2011).

    Article  Google Scholar 

  • 15.

    Omotobora, B. O., Adebola, P. O., Modise, D. M., Laurie, S. M. & Gerrano, A. S. Greenhouse and field evaluation of selected sweetpotato (Ipomoea batatas (L.) Lam.) accessions for drought tolerance in South Africa. Am. J. Plant Sci. 5, 3328–3339 (2014).

    Article  Google Scholar 

  • 16.

    Woolfe, J. A. Sweetpotato: An Untapped Food Resource (Cambridge Univ. Press, 1992).

  • 17.

    Jayne, T. S., Villareal, M., Pingali, P. & Hemrich, G. Interactions between the Agricultural Sector and the HIV/AIDS Pandemic: Implications for Agricultural Policy ESA Working Paper No. 04-46 (FAO, 2004).

  • 18.

    Lebot, V. in Root and Tuber Crops (ed. Bradshaw, J. E.) 97–125 (Springer, 2010).

  • 19.

    Zhao et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    CAS  Article  Google Scholar 

  • 20.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Nangombe et al. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nat. Clim. Change 8, 375–380 (2018).

    Article  Google Scholar 

  • 22.

    Seneviratne, S. I. et al. in Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).

  • 23.

    O’sullivan et al. Thermal limits of leaf metabolism across biomes. Glob. Change Biol. 23, 209–223 (2017).

    Article  Google Scholar 

  • 24.

    Tack, J., Lingenfelser, J. & Jagadish, S. K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc. Natl Acad. Sci. USA 114, 9296–9301 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Araújo et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  Google Scholar 

  • 26.

    Singh, K. D. & Mandal, R. C. Performance of coleus and sweet potato in relation to seasonal variations, time of planting. J. Root Crops 2, 17–22 (1976).

    Google Scholar 

  • 27.

    Gajanayake, B. R., Reddy, K., Shankle, M. W., Arancibia, R. A. & Villordon, A. Quantifying storage root initiation, growth, and developmental responses of sweetpotato to early season temperature. Agr. J. 106, 1795–1804 (2014).

    Article  Google Scholar 

  • 28.

    Boeck, H. J. D., Velde, H. V. D., Groote, T. D. & Nijs, I. Ideas and perspectives: heat stress: more than hot air. Biogeosciences 13, 5821–5825 (2016).

    Article  Google Scholar 

  • 29.

    Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).

    Article  Google Scholar 

  • 30.

    Bita, C. & Gerats, T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4, 273 (2013).

    Article  Google Scholar 

  • 31.

    Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2013).

  • 32.

    Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H. & Zhang, Y. P. Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling. Glob. Ecol. Biogeogr. 26, 998–1007 (2017).

    Article  Google Scholar 

  • 33.

    Reynolds, M. P. et al. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100, 84–95 (1998).

    Article  Google Scholar 

  • 34.

    Park, S. et al. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci. Rep. 6, 33563 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).

    Article  Google Scholar 

  • 36.

    Herrera, J. M. et al. Lessons from 20 years of studies of wheat genotypes in multiple environments and under contrasting production systems. Front. Plant Sci. 10, 1745 (2020).

    Article  Google Scholar 

  • 37.

    Khoury, C. K. et al. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front. Plant Sci. 6, 251 (2015).

    Article  Google Scholar 

  • 38.

    Alwang, J. et al. Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers. Agric. Sys. 172, 16–27 (2019).

    Article  Google Scholar 

  • 39.

    Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).

    Article  Google Scholar 

  • 40.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    CAS  Article  Google Scholar 

  • 41.

    Beck, H. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Article  Google Scholar 

  • 42.

    Patterson, H. D. & Williams, E. R. A new class of resolvable incomplete block designs. Biometrika 63, 83–92 (1976).

    Article  Google Scholar 

  • 43.

    Kumar, A. et al. Improving the efficiency of wheat breeding experiments using alpha lattice design over randomized complete block design. Cereal Res. Commun. 48, 95–101 (2020).

    Article  Google Scholar 

  • 44.

    Khan, M. et al. Comparative efficiency of alpha lattice design and complete randomized block design in wheat, maize and potato field trials. J. Res. Dev. Manag. 11, 115–118 (2015).

    Google Scholar 

  • 45.

    Faye, E., Rebaudo, F., Yánez-Cajo, D., Cauvy-Fraunié, S. & Dangles, O. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods Ecol. Evol. 7, 437–446 (2016).

    Article  Google Scholar 

  • 46.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 47.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 48.

    Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).

    Article  Google Scholar 

  • 49.

    Adoption of the Paris Agreement FCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form