in

Intraspecific host variation plays a key role in virus community assembly

  • 1.

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).

    ADS  CAS  Google Scholar 

  • 2.

    Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388, 1–7 (2009).

    CAS  Google Scholar 

  • 3.

    Prendeville, H. R., Ye, X., Jack Morris, T. & Pilson, D. Virus infections in wild plant populations are both frequent and often unapparent. Am. J. Bot. 99, 1033–1042 (2012).

    Google Scholar 

  • 4.

    Treena, I. B. et al. Distribution and diversity of phytophthora across Australia distribution and diversity of phytophthora across Australia. Pac. Conserv. Biol. 23, 1–13 (2017).

    Google Scholar 

  • 5.

    Anderson, R. M. & May, R. M. Infectious Diseases of Humans; Dynamics and Control (1991).

  • 6.

    Hudson, P. J., Dobson, A. P. & Newborn, D. Prevention of population cycles by parasite removal. Science 282, 2256–2258 (1998).

    ADS  CAS  Google Scholar 

  • 7.

    Thrall, P. H. et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15, 425–435 (2012).

    Google Scholar 

  • 8.

    Stevens, R. B. in Plant Pathology, an advanced treatise (eds Horsfall, J. G. & Dimond, A. E.) 357–429 (1960).

  • 9.

    Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).

    ADS  CAS  Google Scholar 

  • 10.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS  CAS  Google Scholar 

  • 11.

    Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1982).

  • 12.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Google Scholar 

  • 13.

    Grime, P. J. Plant Strategies, Vegetation Processes, and Ecosystem Properties (2001).

  • 14.

    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).

    Google Scholar 

  • 15.

    Seabloom, E. W., Hosseini, P. R., Power, A. G. & Borer, E. T. Diversity and composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California grasslands. Am. Nat. 173, E79–E98 (2009).

    Google Scholar 

  • 16.

    Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).

    Google Scholar 

  • 17.

    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    Google Scholar 

  • 18.

    Borer, E. T., Laine, A.-L. & Seabloom, E. W. A Multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).

    CAS  Google Scholar 

  • 19.

    Tollenaere, C., Susi, H. & Laine, A.-L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2016).

    CAS  Google Scholar 

  • 20.

    Seabloom, E. W., Borer, E. T., Lacroix, C., Mitchell, C. E. & Power, A. G. Richness and composition of niche-assembled viral pathogen communities. PLoS ONE 8, 1–9 (2013).

    Google Scholar 

  • 21.

    Borer, T., Seabloom, E. W., Mitchell, C. E. & Power, A. G. Local context drives infection of grasses by vector-borne generalist viruses. Ecol. Lett. 13, 810–818 (2010).

    Google Scholar 

  • 22.

    Richgels, K. L. D., Hoverman, J. T. & Johnson, P. T. J. Evaluating the role of regional and local processes in structuring a larval trematode metacommunity of Helisoma trivolvis. Ecography 36, 854–863 (2013).

    Google Scholar 

  • 23.

    Rodelo-Urrego, M. et al. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Mol. Ecol. 22, 2325–2340 (2013).

    CAS  Google Scholar 

  • 24.

    Bernardo, P. et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 12, 173–184 (2018).

    Google Scholar 

  • 25.

    Makiola, A. et al. Land use is a determinant of plant pathogen alpha‐ but not beta‐diversity. Mol. Ecol. 28, 3786–3798 (2019).

    Google Scholar 

  • 26.

    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).

    Google Scholar 

  • 27.

    Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, 64–78 (2004).

    Google Scholar 

  • 28.

    Malpica, M. & Sacrista, S. Association and host selectivity in multi-host pathogens. PLoS ONE 1, e41 (2006).

    ADS  Google Scholar 

  • 29.

    Poulin, R., Blanar, C. A., Thieltges, D. W. & Marcogliese, D. J. Scaling up from epidemiology to biogeography: Local infection patterns predict geographical distribution in fish parasites. J. Biogeogr. 39, 1157–1166 (2012).

    Google Scholar 

  • 30.

    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 687–614 (2003).

    Article  Google Scholar 

  • 31.

    Ezenwa, V. O., Price, S. A., Altizer, S., Vitone, N. D. & Cook, K. C. Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos 115, 526–536 (2006).

  • 32.

    Gilbert, G. S. & Webb, C. O. Phylogenetic signal in plant pathogen – host range. Proc. Natl Acad. Sci. USA 104, 4979–4983 (2007).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 16, 496–509 (2007).

    Article  Google Scholar 

  • 34.

    Mitchell, C. E., Blumenthal, D., Jarošík, V., Puckett, E. E. & Pyšek, P. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol. Lett. 13, 1525–1535 (2010).

    Article  Google Scholar 

  • 35.

    Endara, M.-J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).

    Article  Google Scholar 

  • 36.

    Miller, Z. J. Notes and comments fungal pathogen species richness: why do some plant species have more pathogens than others? Am. Nat. 179, 282–292 (2012).

    ADS  Article  Google Scholar 

  • 37.

    Dallas, T. A. & Presley, S. J. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123, 866–874 (2014).

    Article  Google Scholar 

  • 38.

    Strong, D. R. & Levin, D. A. Species richness of plant parasites and growth form of their hosts. Am. Nat. Nat. 114, 1–22 (2019).

  • 39.

    Louhi, K. R., Karvonen, A., Rellstab, C., Louhi, R. & Jokela, J. Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle. J. Anim. Ecol. 82, 191–200 (2013).

    Article  Google Scholar 

  • 40.

    Raybould, A. F., Maskell, L. C., Edwards, M. L., Cooper, J. I. & Gray, A. J. The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. N. Phytol. 141, 265–275 (1999).

    Article  Google Scholar 

  • 41.

    Shoemaker, L. G. et al. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol. Lett. 22, 1115–1125 (2019).

    Article  Google Scholar 

  • 42.

    Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S127 (1995).

    Article  Google Scholar 

  • 43.

    Klein, J., Satta, Y. & Uigin, O. The molecular descent of the major histocompatibility complex. Annu. Rev. Immunol. 11, 269–295 (1993).

    CAS  Article  Google Scholar 

  • 44.

    Kamitani, M., Nagano, A. J., Honjo, M. N. & Kudoh, H. RNA-Seq reveals virus-virus and virus-plant interactions in nature. FEMS Microbiol. Ecol. 92, 1–11 (2016).

    Article  CAS  Google Scholar 

  • 45.

    Mysore, K. S. & Ryu, C. M. Nonhost resistance: How much do we know? Trends Plant Sci. 9, 97–104 (2004).

    CAS  Article  Google Scholar 

  • 46.

    Remold, S. K. Unapparent virus infection and host fitness in three weedy grass species. J. Ecol. 90, 967–977 (2002).

  • 47.

    Bergelson, J., Kreitman, M., Stahl, E. A. & Tian, D. Evolutionary dynamics of plant R-Genes. Plant Pathol. 292, 2281–2286 (2001).

    CAS  Google Scholar 

  • 48.

    Laine, A.-L. Detecting local adaptation in a natural plant-pathogen metapopulation: a laboratory vs. field transplant approach. J. Evol. Biol. 20, 1665–1673 (2007).

    Article  Google Scholar 

  • 49.

    Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: How does a virus cause disease? Plant Cell 25, 1489–1505 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Bruns, E., Carson, M. & May, G. Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages. BMC Evol. Biol. 12, 135 (2012).

    Google Scholar 

  • 51.

    Strauss, A. T., Bowling, A. M., Duffy, M. A., Cáceres, C. E. & Hall, S. R. Linking host traits, interactions with competitors and disease: mechanistic foundations for disease dilution. Funct. Ecol. 32, 1271–1279 (2018).

    Google Scholar 

  • 52.

    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).

    CAS  Google Scholar 

  • 53.

    Jousimo, J. et al. Disease ecology. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).

    ADS  CAS  Google Scholar 

  • 54.

    Ekroth, A. K. E., Rafaluk-Mohr, C. & King, K. C. Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis. Proc. R. Soc. B Biol. Sci. 286, 20191811 (2019).

    Google Scholar 

  • 55.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Google Scholar 

  • 56.

    Rausher, M. D. Tradeoffs in performance on different hosts: evidence from within- and between-site variation in the beetle Deloyala guttata. Evolution 38, 582–595 (1984).

    Article  Google Scholar 

  • 57.

    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Article  Google Scholar 

  • 58.

    Zhou, X. et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 115, 3174–3179 (2018).

    CAS  Article  Google Scholar 

  • 59.

    Karvonen, A., Jokela, J. & Laine, A. L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).

    Article  Google Scholar 

  • 60.

    Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J. & Ton, J. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 5602–5607 (2006).

    ADS  Google Scholar 

  • 61.

    Graham, A. L. Ecological rules governing helminth-microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).

    ADS  CAS  Google Scholar 

  • 62.

    Laine, A.-L. Context-dependent effects of induced resistance under co-infection in a plant-pathogen interaction. Evol. Appl. 4, 696–707 (2011).

    Google Scholar 

  • 63.

    Syller, J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 13, 204–216 (2012).

    Google Scholar 

  • 64.

    Porrozzi, R., Teva, A., Amaral, V. F., Santos Da Costa, M. V. & Grimaldi, G. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta). Am. J. Trop. Med. Hyg. 71, 297–305 (2004).

    Google Scholar 

  • 65.

    Burdon, A. J. J., Thrall, P. H. & Brown, A. H. D. Resistance and virulence structure in two linum marginale-melampsora lini host-pathogen metapopulations with different mating systems. Evolution 53, 704–716 (1999).

    CAS  Google Scholar 

  • 66.

    Lively, C. M., de Roode, J. C., Duffy, M. A., Graham, A. L. & Koskella, B. Interesting open questions in disease ecology and evolution. Am. Nat. 184, S1–S8 (2014).

  • 67.

    Roossinck, M. J. & Bazán, E. R. Symbiosis: viruses as intimate partners. Annu. Rev. Virol. 4, 123–139 (2017).

    CAS  Google Scholar 

  • 68.

    Hily, J. M., Poulicard, N., Mora, M. Á., Pagán, I. & García-Arenal, F. Environment and host genotype determine the outcome of a plant-virus interaction: From antagonism to mutualism. N. Phytol. 209, 812–822 (2016).

    Google Scholar 

  • 69.

    Susi, H., Filloux, D., Frilander, M. J., Roumagnac, P. & Laine, A.-L. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools. PeerJ 2019, e6140 (2019).

    Google Scholar 

  • 70.

    Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    Google Scholar 

  • 71.

    Ovaskainen, O. & Soininen, J. Making more out of sparse data: hierarchical modeling of species communities. Ecology 92, 289–295 (2011).

    Google Scholar 

  • 72.

    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).

    Google Scholar 

  • 73.

    Aivelo, T. & Norberg, A. Parasite–microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).

  • 74.

    Dallas, T. A., Laine, A., Ovaskainen, O. & Dallas, T. A. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. 286, 20191109 (2019).

    Google Scholar 

  • 75.

    Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    Google Scholar 

  • 76.

    Thrall, P. H. & Burdon, J. J. Effect of resistance variation in a natural plant host-pathogen metapopulation on disease dynamics. Plant Pathol. 49, 767–773 (2000).

    Google Scholar 

  • 77.

    Thrall, P. H., Burdon, J. J. & Young, A. Variation in resistance and virulence among demes of a plant host-pathogen metapopulation. J. Ecol. 89, 736–748 (2001).

    Google Scholar 

  • 78.

    Lively, C. M. The effect of host genetic diversity on disease spread. Am. Nat. 175, E149–E152 (2010).

  • 79.

    Benavides, J. A. et al. From parasite encounter to infection: multiple-scale drivers of parasite richness in a wild social primate population. Am. J. Phys. Anthropol. 147, 52–63 (2012).

    Google Scholar 

  • 80.

    Susi, H. & Laine, A. L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).

    Google Scholar 

  • 81.

    Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).

    Google Scholar 

  • 82.

    Jackson, J. A., Pleass, R. J., Cable, J., Bradley, J. E. & Tinsley, R. C. Heterogenous interspecific interactions in a host–parasite system. Int. J. Parasitol. 36, 1341–1349 (2006).

    CAS  Google Scholar 

  • 83.

    Susi, H., Vale, P. F. & Laine, A.-L. Host genotype and coinfection modify the relationship of within and between host transmission. Am. Nat. 186, 000–000 (2015).

    Google Scholar 

  • 84.

    Laine, A. Resistance variation within and among host populations in a plant–pathogen metapopulation: implications for. J. Ecol. 92, 990–1000 (2004).

    Google Scholar 

  • 85.

    Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).

    Google Scholar 

  • 86.

    Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).

    Google Scholar 

  • 87.

    Laine, A.-L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).

    Google Scholar 

  • 88.

    Smith, C. M. & Boyko, E. V. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol. Exp. Appl. 122, 1–16 (2007).

    CAS  Google Scholar 

  • 89.

    Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 647, 966–968 (2006).

    ADS  Google Scholar 

  • 90.

    Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M. & Mescher, M. C. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct. Ecol. 26, 1162–1175 (2012).

    Google Scholar 

  • 91.

    Susi, H. & Laine, A. L. Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild. Evolution (N. Y). 71, 2110–2119 (2017).

    Google Scholar 

  • 92.

    Bergner, L. M. et al. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol. Ecol. 29, 26–39 (2019).

    Google Scholar 

  • 93.

    Telfer, S. et al. Species interactions ina parasite community drive infection risk in a wildlife population. Science 330, 243–247 (2010).

    ADS  CAS  Google Scholar 

  • 94.

    Halliday, F. W. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01289-9 (2020).

  • 95.

    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    CAS  Google Scholar 

  • 96.

    Cassells, A. C. & Herrick, C. C. Cross protection between mild and severe strains of tobacco mosaic virus in doubly inoculated tomato plants. Virology 78, 253–260 (1977).

    CAS  Google Scholar 

  • 97.

    Sagar, A. G. R. & Harper, J. L. Plantago Major L., P. Media L. and P. Lancoeolata L. J. Ecol. 52, 189–221 (1964).

    Google Scholar 

  • 98.

    Laine, A.-L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).

    Google Scholar 

  • 99.

    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    ADS  CAS  Google Scholar 

  • 100.

    Chang, S., Puryear, J. & Cairny, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11, 113–116 (1993).

    CAS  Google Scholar 

  • 101.

    Susi, H. et al. Genome sequences of a capulavirus infecting Plantago lanceolata in the Åland archipelago of Finland. Arch. Virol. 162, 2041–2045 (2017).

    CAS  Google Scholar 

  • 102.

    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).

    Google Scholar 

  • 103.

    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).

    Google Scholar 

  • 104.

    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 2, 561–576 (2017).

    Google Scholar 

  • 105.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  • 106.

    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: With Applications in R. Ecology, Biodiversity and Conservation (Cambridge University Press, 2020).

  • 107.

    Tikhonov, G., Abrego, N., Dunson, D. & Ovaskainen, O. Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods Ecol. Evol. 8, 443–452 (2017).

    Google Scholar 

  • 108.

    Tikhonov, G. et al. Hmsc: hierarchical model of species communities. R. package version 3, 0–7 (2020).

    Google Scholar 

  • 109.

    Bhattacharya, A. & Dunson, D. B. Sparse Bayesian infinite factor models. Biometrika 98, 291–306 (2011).

    MathSciNet  CAS  MATH  Google Scholar 

  • 110.

    Tjur, T. Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am. Stat. 63, 366–372 (2009).

    MathSciNet  MATH  Google Scholar 

  • 111.

    Watanabe, S. A widely applicable bayesian information criterion. J. Mach. Learn. Res. 14, 867–897 (2013).

    MathSciNet  MATH  Google Scholar 

  • 112.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).


  • Source: Ecology - nature.com

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019