in

Juvenile hormone regulates the shift from migrants to residents in adult oriental armyworm, Mythimna separata

  • 1.

    Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).

    PubMed  Google Scholar 

  • 2.

    Zera, A. J. & Tiebel, K. C. Brachypterizing effect of group rearing, juvenile hormone-III, and methoprene on wing length development in the wingdimorphic cricket, Gryllus rubens. J. Insect. Physiol. 34, 489–498 (1988).

    CAS  Google Scholar 

  • 3.

    Mittler, T. E. Juvenile hormone and aphid polymorphism. In: Morphogenetic Hormones of Arthropods (ed Gupta, A. P.). vol. 3. Rutgers Univ, New Brunswick. 453-474 (1991).

  • 4.

    Nijhout, H. F. Control mechanisms of polyphenic development in insects. Biosci 49, 181–192 (1999).

    Google Scholar 

  • 5.

    Rankin, M. A. & Rankin, S. Some factors affecting presumed migratory flight activity of the convergent ladybeetle, Hippodamia convergens (Coccinellidae: Coleoptera). Biol. Bull. 158(3), 356–369 (1980).

    Google Scholar 

  • 6.

    Wang, F. Y., Zhang, X. X. & Zhai, B. P. Flight and re-migration capacity of the rice leaf folder moth, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae). Acta Entomol. Sin 53(11), 1265–1272 (2010).

    Google Scholar 

  • 7.

    Nakasuji, F. & Nakano, A. Flight activity and oviposition characteristics of the seasonal form of a migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). Res. Pop. Ecol. 32, 227–233 (1990).

    Google Scholar 

  • 8.

    Shirai, Y. Flight activity, reproduction, and adult nutrition of the beet webworm, Spoladea recurvalis (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 41, 405–414 (2006).

    Google Scholar 

  • 9.

    Cheng, Y. X., Luo, L. Z., Jiang, X. F. & Sappington, T. W. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet webworm. PLOS ONE 7, e31562, https://doi.org/10.1371/journal.pone.0031562 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Zhang, L., Pan, P., Sappington, T. W., Lu, W. X. & Luo, L. Z. Accelerated and synchronized oviposition induced by flight of young females may intensify larval outbreaks of the rice leaf roller. PLoS ONE. 8(5), e63554 (2015).

    Google Scholar 

  • 11.

    Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–231 (1997).

    CAS  PubMed  Google Scholar 

  • 12.

    Zera, A. J. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions. Integr. Comp. Biol. 43, 607–616 (2004).

    Google Scholar 

  • 13.

    Zera, A. J. Evolutionary genetics of juvenile hormone and ecdysteroid regulation in Gryllus: A case study in the microevolution of endocrine regulation. Comp. Biochem. Physiol. A 144, 365–379 (2006).

    Google Scholar 

  • 14.

    Zera, A. J. Endocrine analysis in evolutionary-developmental studies of insect polymorphism: hormone manipulation versus direct measurement of hormonal regulators. Evol. Dev 9, 499–513 (2007).

    CAS  PubMed  Google Scholar 

  • 15.

    Hardie, J. Juvenile hormone and photoperiodically controlled polymorphism in Aphis fabae: prenatal effects on presumptive oviparae. J. Insect Physiol. 27, 257–265 (1981).

    CAS  Google Scholar 

  • 16.

    Hardie, J., Honda, K., Timar, T. & Varjas, L. Effects of 2, 2-dimethylchromene derivatives on wing determination and metamorphosis in the pea aphid, Acyrthosiphon pisum. Arch. Insect Biochem. Physiol. 30, 25–40 (1995).

    CAS  Google Scholar 

  • 17.

    Ayoade, O., Morooka, S. & Tojo, S. Enhancement of short wing formation and ovarian growth in the genetically defined macropterous strain of the brown planthopper, Nilaparvata lugens. J. Insect Physiol. 45, 93–100 (1999).

    CAS  PubMed  Google Scholar 

  • 18.

    Sun, B. B. et al. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, Cnaphalocrocis Medinalis (Guenée) (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 82(1), 1–13 (2013).

    CAS  PubMed  Google Scholar 

  • 19.

    Tanaka, S. Endocrine control of ovarian development and flight muscle histolysis in a wing dimorphic cricket, Modicogryllus confirmatus. J. Insect Physiol. 40, 483–490 (1994).

    CAS  Google Scholar 

  • 20.

    Zera, A. J. & Cisper, G. Genetic and diurnal variation in the juvenile hormone titer in a wing-polymorphic cricket: implications for the evolution of life histories and dispersal. Physiol. Biochem. Zool. 74, 293–306 (2001).

    CAS  PubMed  Google Scholar 

  • 21.

    Socha, R. & Kula, J. Differential allocation of protein resources to flight muscles and reproductive organs in the flightless wing-polymorphic bug, Pyrrhocoris apterus (L.) (Heteroptera). J. Comp. Physiol. B. 178, 179–188 (2008).

    CAS  PubMed  Google Scholar 

  • 22.

    Lu, K. et al. Nutritional signaling regulates vitellogenin synthesis and egg development through juvenile hormone in Nilaparvata lugens (Stål). Int. J. Mol. Sci. 17, 269 (2016).

    Google Scholar 

  • 23.

    Han, E. N. & Gatehouse, A. G. Effect of temperature and photoperiod on the calling behaviour of a migratory insect, the oriental armyworm Mythimna separata. Physiol. Entomol. 16, 419–427 (1991).

    Google Scholar 

  • 24.

    Luo, L. Z., Li, G. B., Cao, Y. Z. & Hu, Y. The influence of larval rearing density on flight capacity and fecundity of adult oriental armyworm, Mythimna separata (walker). Acta Entomol. Sin 38, 38–45 (1995).

    Google Scholar 

  • 25.

    Cao, Y. Z., Luo, L. Z. & Guo, J. Performance of adult reproduction and flight in relation to larval nutrition in the oriental armyworm, Mythimna separate (Walker). Acta Entomol. Sin 39, 105–108 (1996).

    Google Scholar 

  • 26.

    Jiang, X. F., Luo, L. Z. & Hu, Y. Influences of rearing temperature on flight and reproductive capacity of adult oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 20, 288–292 (2000).

    Google Scholar 

  • 27.

    Jiang, X. F., Luo, L. Z. & Hu, Y. Genetic characteristics of pre-oviposition period in the oriental armyworm Mythimna separata (Walker). Acta Entomol. Sin 25, 68–72 (2005).

    Google Scholar 

  • 28.

    Jiang, X. F., Luo, L. Z. & Zhang, L. Amplified fragment length polymorphism analysis of the oriental armyworm, Mythimna separata (Walker) geographic and melanic laboratory populations in China. J. Econ. Entomol 100, 1525–1532 (2007).

    CAS  PubMed  Google Scholar 

  • 29.

    Wang, Y. Z. & Zhang, X. X. Studies on the migratory behaviours of oriental armyworm, Mythimna separata (Walker). Acta Ecol. Sin 21, 772–779 (2001).

    Google Scholar 

  • 30.

    Zhang, L., Luo, L. Z., Jiang, X. F. & Hu, Y. Influences of starvation on the first day after emergence on ovarian development and flight potential in adults of the oriental armyworm, Mythimna separata (Walker) (Lepidopterea: Noctuidae). Acta Entomol. Sin 49, 895–902 (2006).

    Google Scholar 

  • 31.

    Zhang, L., Luo, L. Z. & Jiang, X. F. Starvation influences allatotropin gene expression and juvenile hormone titer in the female adult oriental armyworm, Mythimna separata. Arch Insect Biochem. Physiol. 68, 63–70 (2008a).

    CAS  PubMed  Google Scholar 

  • 32.

    Zhang, L., Jiang, X. F. & Luo, L. Z. Determination of sensitive stage for switching migrant oriental armyworms into residents. Environ. Entomol 37, 1389–1395 (2008b).

    PubMed  Google Scholar 

  • 33.

    Jiang, X. F. & Luo, L. Z. Comparison of behavioral and physiological characteristics between the emigrant and immigrant populations of the oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 48, 61–67 (2005).

    Google Scholar 

  • 34.

    Jiang, X. F., Luo, L. Z., Zhang, L., Sappington, T. W. & Hu, Y. Regulation of migration in the oriental armyworm, Mythimna separata (Walker) in China: A review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environ. Entomol. 40(3), 516–533 (2011).

    CAS  PubMed  Google Scholar 

  • 35.

    Li, K. B. et al. Influences of flight on energetic reserves and juvenile hormone synthesis by corpora allata of the oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 48, 155–160 (2005).

    CAS  Google Scholar 

  • 36.

    Luo, L. Z., Li, K. B., Jiang, X. F. & Hu, Y. Regulation of flight capacity and contents of energy substances by methoprene in the moths of oriental armyworm, Mythimna separata. Acta Entomol. Sin 8, 63–72 (2001).

    CAS  Google Scholar 

  • 37.

    Teal, P. E. A., Gomez-Simuta, Y. & Proveaux, A. T. Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proc. Natl. Acad. Sci. USA 97, 3708–3712 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 38.

    Rafaeli, A., Zakharova, T., Lapsker, Z. & Jurenka, R. A. The identification of an age- and female- specific putative PBAN membrane-receptor protein in pheromone glands of Helicoverpa armigera: possible up-regulation by Juvenile Hormone. Insect Biochem. Mol. Biol. 33, 371–380 (2003).

    CAS  PubMed  Google Scholar 

  • 39.

    Zera, A. J., Zhao, Z. & Kaliseck, K. Hormones in the field: evolutionary endocrinology of juvenile hormone and ecdysteroids in field populations of the wingdimorphic cricket Gryllus firmus. Physiol. Biochem. Zool. 80, 592–606 (2007).

    CAS  PubMed  Google Scholar 

  • 40.

    Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).

    PubMed  Google Scholar 

  • 41.

    Roy, S., Saha, T. T., Zou, Z. & Raikhel, A. S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 (2018).

    CAS  PubMed  Google Scholar 

  • 42.

    Barbora, K. & Marek, J. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. USA 104, 10488–10493 (2007).

    Google Scholar 

  • 43.

    Baumann, A., Barry, J., Wang, S., Fujiwara, Y. & Wilson, T. G. Paralogous genes involved in juvenile hormone action in Drosophila melanogaster. Genetics 185, 1327–1336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Riddiford, L. M., Truman, J. W., Mirth, C. K. & Shen, Y. C. A role for juvenile hormone in the prepupal development of drosophila melanogaster. Development 137, 1117–1126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Abdou, M. A. et al. Drosophila met and gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945 (2011).

    CAS  PubMed  Google Scholar 

  • 46.

    Charles, J. P. et al. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. USA 108, 21128–21133 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Li, M., Mead, E. A. & Zhu, J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone- induced gene expression. Proc. Natl. Acad. Sci. USA 108, 638–643 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Bernardo, T. J. & Dubrovsky, E. B. The Drosophila juvenile hormone receptor candidates Methoprene-tolerant (Met) and germ cell-expressed (gce) utilize a conserved LIXXL motif to bind the FTZ-F1 nuclear receptor. J. Biol. Chem. 287, 7821–7833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Bernardo, T. J. & Dubrovsky, E. B. Molecular mechanisms of transcription activation by juvenile hormone: a critical role for bHLH-PAS and nuclear receptor proteins. Insects 3, 324–338 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Zhang, Z. L., Xu, J., Sheng, Z., Sui, Y. & Palli, S. R. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, Methoprene tolerant. J. Biol. Chem. 286, 8437–8447 (2011).

    CAS  PubMed  Google Scholar 

  • 51.

    Jindra, M., Uhlirova, M., Charles, J. P., Smykal, V. & Hill, R. J. Genetic evidence for function of the bHLH-PAS protein Gce /Met as a juvenile hormone receptor. PLoS. Genet. 11(7), e1005394 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Parthasarathy, R. & Palli, S. R. Molecular analysis of nutritional and hormonal regulation of female reproduction in the red flour beetle. Tribolium castaneum. Insect Biochem. Mol. Biol 41, 294–305 (2011).

    CAS  PubMed  Google Scholar 

  • 53.

    Guo, W. et al. Juvenile hormone-receptor complex acts on Mcm4 and Mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLOS Genet. 10, e1004702 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Luo, M. et al. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J. Biol. Chem. 292, 8823–34 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Song, J., Wu, Z., Wang, Z., Deng, S. & Zhou, S. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochem. Mol. Biol. 52, 94–101 (2014).

    CAS  PubMed  Google Scholar 

  • 56.

    Wu, Z., Guo, W., Xie, Y. & Zhou, S. Juvenile hormone activates the transcription of cell-division-cycle 6 (Cdc6) for polyploidy-dependent insect vitellogenesis and oogenesis. J. Biol. Chem. 291, 5418–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Wang, Z., Yang, L., Song, J., Kang, L. & Zhou, S. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. Insect Biochem. Mol. Biol. 82, 31–40 (2017).

    CAS  PubMed  Google Scholar 

  • 58.

    Cruz, J., Martin, D., Pascual, N., Maestro, J. L. & Piulachs, M. D. Quantity does matter: juvenile hormone and the onset of vitellogenesis in the German cockroach. Insect Biochem. Mol. Biol. 33, 1219–25 (2003).

    CAS  PubMed  Google Scholar 

  • 59.

    Gujar, H. & Palli, S. R. Juvenile hormone regulation of female reproduction in the common bed bug, Cimex lectularius. Sci. Rep 6, 35546 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Marchal, E., Hult, E. F., Huang, J., Pang, Z. & Stay, B. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata, completely inhibits ovarian development. PLOS ONE 9, e106737 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Luo, L. Z., Jiang, X. F., Li, K. B. & Hu, Y. Influences of flight on reproduction and longevity of the oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 42, 150–158 (1999).

    Google Scholar 

  • 62.

    Luo, L. Z. & Li, G. B. Ultrastructure of the flight muscle of adult oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 39(2), 141–148 (1996).

    ADS  Google Scholar 

  • 63.

    Luo, L. Z. An ultrastructural study on the development of flight muscle in adult oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 39(4), 366–374 (1996).

    MathSciNet  Google Scholar 

  • 64.

    Socha, R. & Šula, J. Flight muscles polymorphism in a flightless bug, Pyrrhocoris apterus (L.): Developmental pattern, biochemical profile and endocrine control. J. Insect Physiol. 52, 231–239 (2006).

    CAS  PubMed  Google Scholar 

  • 65.

    SAS Institute. SAS/STAT User’s Guide, Release 6.03 Ed. SAS Instisute, Cary, NC. (1988).


  • Source: Ecology - nature.com

    Public health is moot without water security

    Decarbonize and diversify